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Inference from data

Setting:

Let data yobs = {yobs,i}n
i=1 be denoted by empirical distribution Qn.

ModelMΘ = {Pθ : θ ∈ Θ ⊂ Rq} is a parametric family of
distributions.

Estimation problem: Given data yobs, estimate θ s.t. Qn is “closest" to Pθ.

Classical estimation techniques such as

Bayesian inference: p(θ|yobs) ∝ p(yobs|θ)p(θ)

Maximum Likelihood (ML): θ̂ML = argmax
θ

p(yobs|θ)

require access to the likelihood function.
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Problem: Many models have intractable likelihoods

The likelihood function cannot be evaluated numerically, or approximated in
reasonable computation time.

Therefore, standard estimation techniques are unrealizable.

Causes of intractable likelihood:

The model is simply too complex.

Variables that are important for model description are unobserved.

The likelihood function has not been derived yet for a newly
constructed model.

Such models are called:

Simulators

Implicit models

Generative models
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Simulators in the Sciences

Physical sciences and engineering:

Population genetics [Pritchard et al., 1999]

Ecology and evolution [Beaumont, 2010]

Astrophysics [Akeret et al., 2015]

Epidemiology [Kypraios et al., 2017]

Radio communications [Bharti et al., 2021]

Atmospheric science [Kopka et al., 2016]

Economics [Dyer et al., 2022]

Solution: use likelihood-free inference methods based on simulating from
the model
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Approximate Bayesian Computation (ABC)
ABC is a likelihood-free inference method that permits sampling from the
approximate posterior of a model, given that it is easy to simulate from.

Rejection ABC algorithm
Sample θ∗ ∼ p(θ)

Simulate data from model, y∗ ∼ Pθ∗
If ρ(S(yobs),S(y∗)) < ε, accept θ∗

Here

ρ( · , · ) is a distance metric (typical choice is Euclidean distance)

S( · ) is the summarizing function

ε is a tolerance threshold

Accepted samples θ1, . . . , θN are iid from the approximate posterior:

p(θ|ρ(S(yobs),S(y) < ε) ≈ p(θ|yobs)
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Approximate Bayesian Computation (ABC) — contd.

The “approximation" in Bayesian inference arises due to

use of tolerance threshold in accepting parameter samples

summarizing the data into a few statistics. If S( · ) is a sufficient
statistic of y, then

p(θ|ρ(S(y∗),S(yobs)) < ε) = p(θ|ρ(y∗, yobs) < ε)

Ingredients required for implementing an ABC algorithm:

distance metric ρ( · , · )

summary statistics S( · )

tolerance threshold ε

ρ(S(yobs),S(y∗)) < ε
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Approximate Bayesian Computation (ABC) — contd.
Choosing ε

In practice, select ε as a small percentile of the simulated distances,
i.e. given {(θ∗i ,S(y∗i )}M

i=1, accept the εM samples of θ∗i with the least
ρ(S(y),S(y∗i ))

Choose ρ( · , · )

Euclidean distance for summary-based ABC

Integral probability metrics such as maximum mean discrepancy,
Wasserstein distance

Choosing S( · )

The choice of statistics is non-trivial as it involves trade-off between
1 information loss due to summarization
2 curse of dimensionality

Fundamental unsolved problem in ABC
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Choosing Summary Statistics
In practice, domain experts manually handcraft and select statistics:

laborious and time-consuming

involves multiple trial-and-error steps

takes up majority of the time of likelihood-free inference projects

Hence, domain knowledge is vital for constructing summaries.

Existing methods given a pool of candidate statistics:

Subset selection (Joyce & Marjoram, 2008)

Projection techniques (Fearnhead & Prangle, 2012)

Regression adjustment (Beaumont et al., 2010)

However, performance of these methods degrade when

number of available model simulations is limited (low-simulation
regime)

model is misspecified, i.e., Qn /∈MΘ
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Case study: Regression-ABC methods
Given accepted samples (θi , si )

nε

i=1, regression-ABC methods account for the dif-
ference between the simulated and observed statistic by adjusting the parameter
values using model

θi = ϕ(si ) + εi , i = 1, . . . , nε.

s: statistics vector

ϕ( · ): conditional expectation E[θ|s]

εi : the residuals

Adjusted samples: θ̃i = ϕ̂(sobs) + ε̂i

sobs

regression 
model

original

adjusted

s maxsmins

θ

θ

θmin

max
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Failure of regression-ABC methods
Model misspecification

Regression-ABC can yield erroneous results under misspecification.

Approx. posterior can lie beyond prior range.
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Failure of regression-ABC methods
Low-simulation regime

When model is expensive, number of simulations are limited.

Regression is susceptible to overfitting.

ABC posteriors can be concentrated far from the true value.
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Can we mitigate these issues by leveraging domain expertise?
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Human-in-the-loop (HITL) ABC
Involve the expert in the inference procedure

Elicit domain knowledge about statistics

Assumptions:

I Expert knowledge is tacit
I Querying the expert is costly

Pool of statistics

HITL-ABC

Prior Model

Feedback
(Yes/No)

Desired
posterior

Data

Current ABC posterior
ABC posterior with

new statistic

Domain Expert
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Problem setting
Human-in-the-loop (HITL) ABC

Pool of statistics: S = {s1, s2, . . . , sw}
Indicator of inclusion or exclusion of sj : γj ∈ {0, 1}
With each vector s, we have associated γ = [γ1, . . . , γw ]>

ABC posterior: pεABC(θ|yobs,γ)

Let γ∗ represent the “desired" statistics vector

Goal: converge towards γ∗ by querying expert about S

Pool of statistics

HITL-ABC

Prior Model

Feedback
(Yes/No)

Desired
posterior

Data

Current ABC posterior
ABC posterior with

new statistic

Domain Expert
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Expert feedback model
Human-in-the-loop (HITL) ABC
Formulate expert feedback as a probabilistic model

Expert provides binary feedback fj ∈ {0, 1} about sj

Model fj as a noisy version of γj :

γj ∼ Bernoulli(ρj),

fj |γj ∼ γjBernoulli(π) + (1− γj)Bernoulli(1− π).

π ∈ [0, 1]: the level of noise
ρj : prior probability of selecting sj

Let F be the set of feedback obtained
p(γ|F) available in closed-form

ABC posterior based on F :

pεABC(θ|yobs,F) :=
∑

γ∈{0,1}w

pεABC(θ|yobs,γ)p(γ|F)
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Sequential experimental design
Human-in-the-loop (HITL) ABC

We design a sequential Bayesian experiment to select next statistic to query.

At iteration k + 1, we select sj∗ , where

j∗ = arg max
j /∈Jk

KL[pεABC(θ|yobs,Fk , F̃j) || pεABC(θ|yobs,Fk )]

Jk : set of indices of statistics queried after k iterations

Estimate KL from samples as per [Perez-Cruz, 2008]

Stopping criterion: when utility of next statistic < δ

Output: ABC posterior pεABC(θ|yobs, γ̂), where

γ̂k ,j =

arg max
γj∈{0,1}

p(γj |fj), if j ∈ Jk

0, otherwise.
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Results
Low-simulation regime

Model: g-and-k distribution (4 parameters)

Total 15 statistics in the pool (4 informative, 6 correlated, 5 noisy)

HITL-ABC outperforms other methods for nsim ≤ 350, otherwise at par.

Lack of simulations is compensated by expert’s feedback.
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Results
Low-simulation regime

Table: Average number of expert feedback required.

nsim 200 250 300 350 400 450

HITL-ABC 10.1 8.5 8.3 6.3 6.0 6.3
Random 13.8 13.6 13.4 13.3 13.1 13.4
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Results
Model misspecification

Radio propagation model (high-dimensional, complex-valued time series)

Expert is shown inference results, and can detect misspecified statistics

Parameters [G0,T , λ], 6 statistics (one mismatch)

ζ: misspecification level
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(a) ζ = 0 (b) ζ = 5 (c) ζ = 10

When ζ > 0, performance of linear regression ABC seriously degrades

Removing mismatched statistic improves performance
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Conclusion

We introduce the first ABC method that actively leverages domain
knowledge from experts in order to select summary statistics.

With fairly limited effort from the expert (answering yes/no when pre-
sented with a few statistics), we are able to outperform the regression-
ABC methods in situations where the simulation budget is low.

Involving the experts in the ABC method gives us the opportunity to
handle misspecified models, something the existing methods fail in.
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