

Introduction

Simulator-based models:

- mechanistic models of some physical phenomenon, easy to simulate from
- prevalent in domains such population genetics, ecology, astronomy, telecommunications, and cognitive science • inferring their parameters θ from data y is challenging as their likelihood function $p(\mathbf{y}|\theta)$ is intractable \Rightarrow maximizing likelihood or Bayesian inference not possible
- **Solution:** Likelihood-free inference methods such as *approximate Bayesian computation* (ABC) [1] that permit sampling from the approximate posterior.

Fundamental unsolved problem in ABC: choosing summary statistics

- choice of statistics readily impacts the performance of ABC methods
- involves a non-trivial trade-off between
- information loss due to summarization
- curse of dimensionality
- choice depends on the model, application, and data at hand

In practice, domain experts are crucial for statistics selection.

• Experts manually handcraft and select statistics, which is laborious and time-consuming, involving multiple trial-and-error steps.

Our contributions:

- We propose an active learning method that makes the statistics selection task easier and efficient for domain experts.
- By eliciting expert knowledge, we are able to handle
- low simulation regimes, and
- model misspecification scenarios.

Approximate Bayesian Computation

ABC is a likelihood-free inference method that permits sampling from the approximate posterior of a model, given that it is easy to simulate from.

Rejection-ABC algorithm:

Failure of regression-ABC methods

Regression-ABC methods [2] account for the difference between the simulated and observed statistics by adjusting the parameter values.

Approximate Bayesian Computation with Domain Expert in the Loop

Ayush Bharti¹, Louis Filstroff¹, and Samuel Kaski^{1,2}

¹Department of Computer Science, Aalto University, Finland

²Department of Computer Science, University of Manchester, United Kingdom

Method: Human-in-the-loop (HITL) ABC

- We design an experiment to find a statistic from the pool to query
- Domain expert gives feedback (Yes/No) on the usefulness of the statistic
- Expert feedback is formulated as a probabilistic modeling problem
- Knowledge of expert is treated as a latent variable

Accept

Expert feedback model

$$\gamma_j \sim \text{Bernoulli}(\rho_j)$$

 $f_j | \gamma_j \sim \gamma_j \text{Bernoulli}(\pi) + (1 - \gamma_j) \text{Bernoulli}(\pi)$

- $\gamma \in \{0, 1\}$: statistic inclusion/exclusion variable
- $f \in \{0, 1\}$: expert binary feedback
- $\pi \in [0, 1]$: expert latent knowledge variable
- $\rho \in [0, 1]$: prior probability of selecting a statistic

Posterior of feedback model given indices \mathcal{J} of queried statistics:

$$p(\boldsymbol{\gamma}|\mathcal{F}) = \prod_{j \in \mathcal{J}} p(\gamma_j|f_j) \prod_{j \notin \mathcal{J}} p(\boldsymbol{\gamma})$$

ABC posterior based on feedback

We define the ABC posterior given a sequence of feedback $\mathscr{F} = \{f_1, ...\}$

 $p_{ABC}^{\epsilon}(\theta|\mathbf{y},\mathscr{F}) := \sum_{\boldsymbol{\gamma} \in \{0,1\}^{w}} p_{ABC}^{\epsilon}(\theta|\mathbf{y},\boldsymbol{\gamma})_{P}$

Procedure for sampling from this ABC posterior:

1. Sample $\boldsymbol{\gamma}^{(i)} \sim p(\boldsymbol{\gamma}|\mathscr{F})$

2. Sample $\theta^{(i)} | \boldsymbol{\gamma}^{(i)} \sim p^{\epsilon}_{ABC}(\theta | \mathbf{y}, \boldsymbol{\gamma}^{(i)})$

Utility function

Based on the KL divergence between current and future ABC poster

 $j^{*} = \operatorname*{argmax}_{i \notin \mathscr{I}_{k}} \mathbb{E}_{p(\tilde{f}_{j}|\mathscr{F}_{k})} \left[\operatorname{KL}[p_{\operatorname{ABC}}^{\epsilon}(\theta|\mathbf{y},\mathscr{F}_{k},\tilde{f}_{j}) || p_{\operatorname{ABC}}^{\epsilon}(\theta|\mathbf{y},\mathscr{F}_{k})] \right]$

Misspecified 0e+00 1e+09 2e+09 3e+09 4e+09

HITL-ABC posterior

At the end of each iteration k, the HITL-ABC posterior is $p_{ABC}^{\epsilon}(\theta|\mathbf{y}, \hat{\boldsymbol{\gamma}})$ where $\hat{\boldsymbol{\gamma}}$ is

$$\hat{\gamma}_{k,j} = \begin{cases} \operatorname*{arg\,max}_{\gamma_j \in \{0,1\}} p(\gamma_j | f_j), & \text{if } j \in \{0,1\} \\ 0, & \text{othermal} \end{cases}$$

References

[1] Sisson, S. A, Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC, 2018. [2] Beaumont, M. A., Zhang, W., and Balding, D. J "Approximate Bayesian computation in population genetics", Genetics, 162(4):2025–2035, 2002.

	(1
$\operatorname{oulli}(1-\pi)$	(2

γ _j)		(3)

$., f_m$ } as		
$p(\boldsymbol{\gamma} \mathscr{F}).$		

(4)

rior given feedback \tilde{f}_j :	
$\left \left p^{\epsilon}_{\mathrm{ABC}}(\theta \mathbf{y},\mathscr{F}_k) \right] \right $	(5)

• •	-			

$= \mathscr{J}_k$	(6)
erwise.	(0)

Results

Experiment in low-simulation regime

- Model: g-and-k distribution (4 parameters)
- HITL-ABC outperforms other methods for $n_{sim} \leq 350$, otherwise at par

Experiment under model misspecification

- Radio propagation model (high-dimensional, complex-valued time series)
- Expert is shown inference results, and can detect misspecified statistics
- 3 parameters, ζ specifies misspecification level

Conclusion

- summary statistics.

• We introduce the first ABC method that actively leverages domain knowledge from experts in order to select • With fairly limited effort from the expert, we are able to outperform the regression-ABC methods.