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Introduction

Simulator-based models:
• mechanistic models of some physical phenomenon, easy to simulate from

• prevalent in domains such population genetics, ecology, astronomy, telecommunications, and cognitive science

• inferring their parameters θ from data y is challenging as their likelihood function p(y|θ) is intractable
⇒ maximizing likelihood or Bayesian inference not possible

Solution: Likelihood-free inference methods such as approximate Bayesian computation (ABC) [1] that permit
sampling from the approximate posterior.

Fundamental unsolved problem in ABC: choosing summary statistics
• choice of statistics readily impacts the performance of ABC methods

• involves a non-trivial trade-off between

– information loss due to summarization
– curse of dimensionality

• choice depends on the model, application, and data at hand

In practice, domain experts are crucial for statistics selection.

• Experts manually handcraft and select statistics, which is laborious and time-consuming, involving multiple
trial-and-error steps.

Our contributions:
• We propose an active learning method that makes the statistics selection task easier and efficient for domain

experts.

• By eliciting expert knowledge, we are able to handle

– low simulation regimes, and
– model misspecification scenarios.

Approximate Bayesian Computation

ABC is a likelihood-free inference method that permits sampling from the approximate posterior of a model,
given that it is easy to simulate from.

Rejection-ABC algorithm:
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Failure of regression-ABC methods

Regression-ABC methods [2] account for the difference between the simulated and observed statistics by adjust-
ing the parameter values.
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(a) Low-simulation regime (b) Model misspecification

Method: Human-in-the-loop (HITL) ABC

• We design an experiment to find a statistic from the pool to query

• Domain expert gives feedback (Yes/No) on the usefulness of the statistic

• Expert feedback is formulated as a probabilistic modeling problem

• Knowledge of expert is treated as a latent variable

Pool of statistics

HITL-ABC

Prior Model

Feedback
(Yes/No)

Desired
posterior

Data

Current ABC posterior
ABC posterior with

new statistic

Domain Expert

Expert feedback model

γ j ∼Bernoulli(ρ j) (1)
f j|γ j ∼ γ jBernoulli(π)+ (1−γ j)Bernoulli(1−π) (2)

• γ ∈ {0,1}: statistic inclusion/exclusion variable

• f ∈ {0,1}: expert binary feedback

• π ∈ [0,1]: expert latent knowledge variable

• ρ ∈ [0,1]: prior probability of selecting a statistic

Posterior of feedback model given indices J of queried statistics:

p(γ|F )= ∏
j∈J

p(γ j| f j)
∏
j∉J

p(γ j) (3)

ABC posterior based on feedback

We define the ABC posterior given a sequence of feedback F = { f1, . . . , fm} as

pε
ABC(θ|y,F ) := ∑

γ∈{0,1}w

pε
ABC(θ|y,γ)p(γ|F ). (4)

Procedure for sampling from this ABC posterior:
1. Sample γ(i) ∼ p(γ|F )

2. Sample θ(i)|γ(i) ∼ pε
ABC(θ|y,γ(i))

Utility function

Based on the KL divergence between current and future ABC posterior given feedback f̃ j:

j∗ = argmax
j∉Jk

Ep( f̃ j|Fk)
[
KL[pε

ABC(θ|y,Fk, f̃ j) || pε
ABC(θ|y,Fk)]

]
(5)

HITL-ABC posterior

At the end of each iteration k, the HITL-ABC posterior is pε
ABC(θ|y, γ̂) where γ̂ is

γ̂k, j =


argmax
γ j∈{0,1}

p(γ j| f j), if j ∈Jk

0, otherwise.
(6)

References
[1] Sisson, S. A, Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC, 2018.

[2] Beaumont, M. A., Zhang, W., and Balding, D. J “Approximate Bayesian computation in population genetics",
Genetics, 162(4):2025–2035, 2002.

Results
Experiment in low-simulation regime

• Model: g-and-k distribution (4 parameters)

• HITL-ABC outperforms other methods for nsim ≤ 350, otherwise at par
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Experiment under model misspecification

• Radio propagation model (high-dimensional, complex-valued time series)

• Expert is shown inference results, and can detect misspecified statistics

• 3 parameters, ζ specifies misspecification level
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(a) ζ= 0 (b) ζ= 5

Conclusion

• We introduce the first ABC method that actively leverages domain knowledge from experts in order to select
summary statistics.

• With fairly limited effort from the expert, we are able to outperform the regression-ABC methods.


