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Setting

Inference for simulator-based models with intractable likelihoods.

o Data {x}7_;, C X C RY denoted by empirical distribution Q"

e Simulator Py = {Py : 6 € ©}, characterised through generative process ( Gy, U), where
Gy :U — X and U is a distribution on U C R*

@ The likelihood associated to Py is unknown
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Setting

Inference for simulator-based models with intractable likelihoods.

o Data {x}7_;, C X C RY denoted by empirical distribution Q"

e Simulator Py = {Py : 6 € ©}, characterised through generative process ( Gy, U), where
Gy :U — X and U is a distribution on U C R*

@ The likelihood associated to Py is unknown
@ We can sample y ~ Py by

@ Sampling u ~ U, U being uniform or Gaussian distribution

@ Applying the generator y = Gp(u)
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Discrepancy-based Likelihood-free Inference

Suppose D is a discrepancy measure between probability distributions.

Approximate Bayesian computation
Allows sampling from the approximate posterior p(6|D(Py, Q") < €).

Minimum distance estimation:
Solve the optimisation problem
02 = arg min D(Py, Q").
0O
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Discrepancy-based Likelihood-free Inference

Suppose D is a discrepancy measure between probability distributions.

Approximate Bayesian computation
Allows sampling from the approximate posterior p(6|D(Py, Q") < €).

Minimum distance estimation:
Solve the optimisation problem

02 = arg min D(Py,Q").
0ecO

However, we can't compute D(Pg, Q") but can only estimate it given samples {y;}7 ; from Py

= estimating D accurately in few samples is key!
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Choice of discrepancy D

We want discrepancy measure that can be estimated efficiently from samples
o D(P, Q") ~ D(Py’, Q")

o Efficient in terms of sample complexity
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Choice of discrepancy D

We want discrepancy measure that can be estimated efficiently from samples
o D(P, Q") ~ D(Py’, Q")

o Efficient in terms of sample complexity

Popular discrepancies for likelihood-free inference:

e KL divergence [Jiang, 2018]

o Wasserstein distance [Bernton et al., 2019]

@ Sinkhorn divergence [Genevay et al., 2019]

o Classification accuracy [Gutmann et al., 2017]

e Maximum mean discrepancy [Gretton et al., 2012]
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Maximum mean discrepancy (MMD)
Maximum mean discrepancy (MMD) is a notion of distance between probability distributions.

Function Space (RKHS) H,

Density
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Maximum mean discrepancy (MMD)
Maximum mean discrepancy (MMD) is a notion of distance between probability distributions

A

X

Function Space (RKHS) H,

Density

Advantages of MMD:
o Sample complexity of O(m~1/2), better than its alternatives

@ Desirable properties — leads to consistent and robust estimators
@ Applicable on any data type for which a kernel can be defined
@ Hence, it is used in many likelihood-free inference frameworks, e.g.
[Park et al., 2015, Briol et al., 2019, Dellaporta et al., 2022]
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Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions P and Q is

MMD(P™.Q") = Eypplk(y.y)] — 2Byepsnolk(x.9)] + Exonglk(x,x)]
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Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions P and Q is

MMDL(P™,Q") = Eyyeplk(y,y)] — 2Byepsnnlk(y)] +  Exxeglk(x,x)]
V-statistic estimator for MMD computed using samples {y;}™, ~ P and {x;}7_; ~ Q:

m , 1 m 2 n m 1 n
MMDE(P™,Q) = 5 S ki) — oS k() 5 k()

ij=1 i=1 j=1 ij=1
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Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions P and Q is

MMD(P™.Q") = Eypplk(y.y)] — 2Byepsnolk(x.9)] + Exonglk(x,x)]

V-statistic estimator for MMD computed using samples {y;}™, ~ P and {x;}7_; ~ Q:

m , 1 m 2 n m 1 n
MMDE(P™,Q) = 5 S ki) — oS k() 5 k()

ij=1 i=1 j=1 ij=1

Sample complexity: O(m /2 + n=1/2)
@ n: no. of observed data samples (fixed)

@ To reduce error by half, need four times the no. of samples from Py
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© Optimally-weighted (OW) estimator of MMD

8/22



Proposed Optimally-weighted Estimator of MMD
We estimate the MMD as

MMD2(BT, Q") = Zw,mgk(y,,y, - —Z wik(xi, y;)
ij=1 i=1 j=1

where the weights w; chosen optimally.

optimally-weighted

equally-weighted (ours)

1 n
n2 Z k(Xiaxj)v

ij=1
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Deriving the optimal weights
Let PgLW = Dty widy, = 3010 Wi0 Gy (uy)-

Using the reverse triangle inequality, we get
IMMD(Pg, Q) — MMD(Pp"", Q)| < MMD (g, Py™").
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Deriving the optimal weights
Let Pghw = Dty widy, = 3010 Wi0 Gy (uy)-

Using the reverse triangle inequality, we get

IMMD(Pg, Q) — MMD(Pp"", Q)| < MMD (g, Py™").

Let ¢ : U x U — R be a reproducing kernel s.t. k(x, -)o Gy € Hc.

Then, the error upper bounded can be written as (see paper for proof):

m
MMDy (g, P/*) = K x MMD,. (U, > w,-éu,) :
i=1
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Deriving the optimal weights
Let Pghw = Dty widy, = 3010 Wi0 Gy (uy)-

Using the reverse triangle inequality, we get

IMMDy(Pg, Q) — MMD(Py™", Q)| < MMD(Pg, Py™™).

Let ¢ : U x U — R be a reproducing kernel s.t. k(x, -)o Gy € Hc.

Then, the error upper bounded can be written as (see paper for proof):

m
MMDy (g, P/*) = K x MMD,. (U, > w,-éu,) :
i=1

The weights minimising this upper bound are:
m
w* = argmin MMD¢ [ U, Z o
weR™ i=1

Weights can be obtained in closed-form as U is a simple distribution. 1022



Theoretical guarantees

Assumptions:
@ c is a Matérn kernel of order v. on U C R*®
@ k is Matérn or squared-exponential kernel of order vy
@ k(x,-)o Gy € Hc holds
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Theoretical guarantees

Assumptions:
@ c is a Matérn kernel of order v. on U C R*®
@ k is Matérn or squared-exponential kernel of order vy
@ k(x,-)o Gy € Hc holds

Sample complexity result for our estimator:

N=

IMMD (5, Q) — MMDk (B, Q)| = O(m~ < 2).

@ Our method has improved sample complexity over V-statistic for any v, and s
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Theoretical guarantees

Assumptions:
@ c is a Matérn kernel of order v. on U C R*®

@ k is Matérn or squared-exponential kernel of order vy
@ k(x,-)o Gy € Hc holds

Sample complexity result for our estimator:

NI

IMMD (5, Q) — MMDk (B, Q)| = O(m~ < 2).

@ Our method has improved sample complexity over V-statistic for any v, and s

Choice of kernel c:
@ depends on smoothness of kernel k and generator Gy

@ as smooth as possible, but not smoother than Gy or k
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Computational cost

Total cost of the method is

. . Simulator ~ No ve _ 1, No
@ cost of simulating from the model costly? S 1
O(mCyen)
| Yes Yesl
» often the bottleneck i l
@ the cost of estimating MMD Use optimal

weights (ours) Use V-statistic

» V-statistic: O(m? + mn + n?)

» Optimally-weighted: O(m® + mn + n?) Fig_ure: When to use our _opjcimally—weighted
estimator over the V-statistic.
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Benchmarking on popular simulators

We fix 6 for each model and estimate the MMD? between Py’ and Py with n = 10,000 and
m = 256.

Model d | IID V-stat 1D OW (ours)

s
g-and-k 1 1 |225(1.52) 0.086 (0.049)
Two moons 2 2 1236(1.94) 0.057 (0.054)
Bivariate Beta 5 2 |213(1.17) 0.555 (0.227)
MA(2) 12 10 | 2.42 (0.796) 0.705 (0.107)
M/G/1 quewe 10 5 |2.52(1.19) 1.71 (0.568)
Lotka-Volterra 600 2 | 2.13(1.10) 2.04 (0.956)

@ Our estimator achieves the lowest error for all the models when {u;}7 ; are taken to be
iid uniforms.

@ Magnitude of this improvement reduces as s (the dimension of ) increases.
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Varying dimensions s and d
Multivariate g-and-k distribution

Two formulation of the model:
(] (Gg, [Ug) where U = N(O, ls)

@ (U, Gy) where U = Unif(0,1)°

MMD2(Pg", P3)

1073

n = 10,000, m = 500

—_—

o

— V-statistic
= (J: Uniform
—— [J: Gaussian

25 50 75 100
Dimension, s
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Varying dimensions s and d
Multivariate g-and-k distribution

Two formulation of the model:
@ (Gy,Uy) where U = N(0, I5)
@ (U, Gy) where U = Unif(0,1)°
Observations:

@ Our estimator performs better than the
V-statistic even in dimensions as high as
100.

@ Gaussian embedding is better than
uniform for this model.

MMD2(Pg", P3)

1073

n

= 10,000, m = 500

—_—

s

— V-statistic
——— (J: Uniform
—— [J: Gaussian

25 50 75 100
Dimension, s
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Varying choice of kernels k and ¢
Multivariate g-and-k distribution

(Pg', Pg)

NIMID?

1072

1073

s=d=10,n=10,000

c: SE, k: Matern

c: Matern, k: Matern
c: SE, k: SE

c: Matern, k: SE

Pt

100 200 300 400 500
No. of samples, m

Observations:

@ Our method performs best when k is the
squared-exponential (SE) kernel, i.e.,
when it is infinitely smooth.

@ Combination of ¢ as SE and k as the
Matérn kernel is the worst.

@ From a computational viewpoint, it is
always beneficial to take k to be very
smooth.
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Performance vs. computational cost
Multivariate g-and-k distribution

We compare estimators for a fixed computa-
tional budget.

@ We vary n and take m = n for the
V-statistic and m = 2n?/3 for the OW
estimator.

@ Our estimator achieves lower error on
average than the V-statistic.

o It is preferable to use the OW estimator
even for a computationally cheap
simulator like the multivariate g-and-k.

MMD?2(PJ, P3)

1072

1073

[

I V-statistic ¢

n=200 A n=1000
n=500 4 n=2000

OW (ours) b

1072

101 100
Total cost [seconds]
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Composite goodness-of-fit test based on MMD?
Multivariate g-and-k distribution
Suppose we have iid draws from distribution Q.

Null hypothesis: Q is an element of model {Py : 0 € O}

Alternate hypothesis: Q is not an element of {Py : 6 € ©}

Q is multivariate g-and-k with 64 = 0.1 (null) or 84 = 0.5 (alternative)

Test requires performing two steps repeatedly:

@ estimating parameters 0 using MMD
@ estimating MMD? between Q and Pd

2 ) <~ 10 2

2.6 01 3.1 0.9 0y 1.1 -0.2 03 0.5 —0.05 05

0.2

18/22



Composite goodness-of-fit test based on MMD?
Multivariate g-and-k distribution
Suppose we have iid draws from distribution Q.

@ Null hypothesis: Q is an element of model {Py : § € ©}

Alternate hypothesis: Q is not an element of {Py : € ©}
e Q is multivariate g-and-k with 6, = 0.1 (null) or 84 = 0.5 (alternative)

Test requires performing two steps repeatedly:

@ estimating parameters 6 using MMD
@ estimating MMD? between Q and P§

Table: Fraction of repeats for which the null was rejected. An ideal test would have 0.05 when the null
holds, and 1 otherwise.

Cases IID V-stat 11D OW (ours)
64 = 0.1 (null holds) 0.040 0.047
64 = 0.5 (alternative holds) 0.040 0.413
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Large scale offshore wind farm model

We apply ABC to a low-order wake model [Kirby et al., 2023]

Simulates estimate of the farm-averaged
local turbine thrust coefficient

Parameter 6 is the angle (in degrees) at
which the wind is blowing

Challenge: simulating one data point
takes ~ 2 mins

Generating 1000 datasets with m = 10
took & 245 hours

Our method can achieve similar
performance as the V-statistic with much
smaller m, saving hours of computation
time.

0.15
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Conclusion

@ We proposed an optimally-weighted MMD estimator which has improved sample
complexity than the V-statistic.

@ Our estimator requires fewer data points than alternatives in this setting, making it
especially advantageous for computationally expensive simulators.
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Conclusion

@ We proposed an optimally-weighted MMD estimator which has improved sample
complexity than the V-statistic.

@ Our estimator requires fewer data points than alternatives in this setting, making it
especially advantageous for computationally expensive simulators.
@ Limitations and open questions:

» Parameterisation of a simulator through generator Gy and measure U is usually not unique.
» We focus on the MMD and not its gradient.

» Qur ideas can potentially translate to other distances, such as the Wasserstein distance and
Sinkhorn divergence.
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