Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-free Inference

Ayush Bharti¹, Masha Naslidnyk², Oscar Key², Samuel Kaski^{1,3}, François-Xavier Briol^{2,4}

Department of Computer Science, Aalto University, Finland¹ Department of Statistical Science, University College London, UK² Department of Computer Science, University of Manchester, UK³ The Alan Turing Institute, UK⁴

June 4, 2023

Outline

2 Optimally-weighted (OW) estimator of MMD

Setting

Inference for simulator-based models with intractable likelihoods.

- Data $\{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator $\mathcal{P}_{\theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, characterised through generative process (G_{θ}, \mathbb{U}) , where $G_{\theta} : \mathcal{U} \to \mathcal{X}$ and \mathbb{U} is a distribution on $\mathcal{U} \subset \mathbb{R}^{s}$
- The likelihood associated to \mathbb{P}_{θ} is unknown
- We can sample $y \sim \mathbb{P}_{ heta}$ by
 - $lacksymbol{0}$ Sampling $u\sim \mathbb{U},\,\mathbb{U}$ being uniform or Gaussian distribution
 - (2) Applying the generator $y = G_{\theta}(u)$

Setting

Inference for simulator-based models with intractable likelihoods.

- Data $\{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator $\mathcal{P}_{\theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, characterised through generative process (G_{θ}, \mathbb{U}) , where $G_{\theta} : \mathcal{U} \to \mathcal{X}$ and \mathbb{U} is a distribution on $\mathcal{U} \subset \mathbb{R}^{s}$
- The likelihood associated to \mathbb{P}_{θ} is unknown
- We can sample $y \sim \mathbb{P}_{ heta}$ by
 - **()** Sampling $u \sim \mathbb{U}$, \mathbb{U} being uniform or Gaussian distribution
 - 2 Applying the generator $y = G_{\theta}(u)$

Discrepancy-based Likelihood-free Inference

Suppose \mathcal{D} is a discrepancy measure between probability distributions.

Approximate Bayesian computation

Allows sampling from the approximate posterior $p(\theta | \mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n) < \epsilon)$.

Minimum distance estimation:

Solve the optimisation problem

 $\hat{ heta}_m^{\mathcal{D}} = \operatorname*{arg\,min}_{ heta \in \Theta} \, \mathcal{D}(\mathbb{P}_{ heta}, \mathbb{Q}^n).$

However, we can't compute $\mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n)$ but can only estimate it given samples $\{y_i\}_{i=1}^m$ from \mathbb{P}_{θ} \Rightarrow estimating \mathcal{D} accurately in few samples is key!

Discrepancy-based Likelihood-free Inference

Suppose \mathcal{D} is a discrepancy measure between probability distributions.

Approximate Bayesian computation

Allows sampling from the approximate posterior $p(\theta | \mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n) < \epsilon)$.

Minimum distance estimation:

Solve the optimisation problem

$$\hat{ heta}^{\mathcal{D}}_m = rgmin_{ heta \in \Theta} \mathcal{D}(\mathbb{P}_{ heta}, \mathbb{Q}^n).$$

However, we can't compute $\mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n)$ but can only estimate it given samples $\{y_i\}_{i=1}^m$ from \mathbb{P}_{θ} \Rightarrow estimating \mathcal{D} accurately in few samples is key!

Choice of discrepancy $\ensuremath{\mathcal{D}}$

We want discrepancy measure that can be estimated efficiently from samples

- $\mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n) \approx \mathcal{D}(\mathbb{P}_{\theta}^m, \mathbb{Q}^n)$
- Efficient in terms of sample complexity

Popular discrepancies for likelihood-free inference:

- KL divergence [Jiang, 2018]
- Wasserstein distance [Bernton et al., 2019]
- Sinkhorn divergence [Genevay et al., 2019]
- Classification accuracy [Gutmann et al., 2017]
- Maximum mean discrepancy [Gretton et al., 2012]

Choice of discrepancy $\ensuremath{\mathcal{D}}$

We want discrepancy measure that can be estimated efficiently from samples

- $\mathcal{D}(\mathbb{P}_{\theta}, \mathbb{Q}^n) \approx \mathcal{D}(\mathbb{P}_{\theta}^m, \mathbb{Q}^n)$
- Efficient in terms of sample complexity

Popular discrepancies for likelihood-free inference:

- KL divergence [Jiang, 2018]
- Wasserstein distance [Bernton et al., 2019]
- Sinkhorn divergence [Genevay et al., 2019]
- Classification accuracy [Gutmann et al., 2017]
- Maximum mean discrepancy [Gretton et al., 2012]

Maximum mean discrepancy (MMD)

Maximum mean discrepancy (MMD) is a notion of distance between probability distributions.

Advantages of MMD:

- Sample complexity of $\mathcal{O}(m^{-1/2})$, better than its alternatives
- Desirable properties leads to consistent and robust estimators
- Applicable on any data type for which a kernel can be defined
- Hence, it is used in many likelihood-free inference frameworks, e.g. [Park et al., 2015, Briol et al., 2019, Dellaporta et al., 2022]

Maximum mean discrepancy (MMD)

Maximum mean discrepancy (MMD) is a notion of distance between probability distributions.

Advantages of MMD:

- Sample complexity of $\mathcal{O}(m^{-1/2})$, better than its alternatives
- Desirable properties leads to consistent and robust estimators
- Applicable on any data type for which a kernel can be defined
- Hence, it is used in many likelihood-free inference frameworks, e.g. [Park et al., 2015, Briol et al., 2019, Dellaporta et al., 2022]

Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions \mathbb{P} and \mathbb{Q} is

$$\mathsf{MMD}_k^2(\mathbb{P}^m,\mathbb{Q}^n) = \mathbb{E}_{y,y'\sim\mathbb{P}}[k(y,y')] - 2\mathbb{E}_{y\sim\mathbb{P},x\sim\mathbb{Q}}[k(x,y)] + \mathbb{E}_{x,x'\sim\mathbb{Q}}[k(x,x')]$$

V-statistic estimator for MMD computed using samples $\{y_i\}_{i=1}^m \sim \mathbb{P}$ and $\{x_i\}_{i=1}^n \sim \mathbb{Q}$:

$$\mathsf{MMD}_{k}^{2}(\mathbb{P}^{m},\mathbb{Q}^{n}) = \frac{1}{m^{2}} \sum_{i,j=1}^{m} k(y_{i},y_{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_{i},y_{j}) + \frac{1}{n^{2}} \sum_{i,j=1}^{n} k(x_{i},x_{j})$$

Sample complexity: $\mathcal{O}(m^{-1/2} + n^{-1/2})$

- n: no. of observed data samples (fixed)
- To reduce error by half, need four times the no. of samples from $\mathbb{P}_{ heta}$

Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions \mathbb{P} and \mathbb{Q} is

$$\mathsf{MMD}_k^2(\mathbb{P}^m,\mathbb{Q}^n) = \mathbb{E}_{y,y'\sim\mathbb{P}}[k(y,y')] - 2\mathbb{E}_{y\sim\mathbb{P},x\sim\mathbb{Q}}[k(x,y)] + \mathbb{E}_{x,x'\sim\mathbb{Q}}[k(x,x')]$$

V-statistic estimator for MMD computed using samples $\{y_i\}_{i=1}^m \sim \mathbb{P}$ and $\{x_i\}_{i=1}^n \sim \mathbb{Q}$:

$$\mathsf{MMD}_{k}^{2}(\mathbb{P}^{m},\mathbb{Q}^{n}) = \frac{1}{m^{2}}\sum_{i,j=1}^{m}k(y_{i},y_{j}) - \frac{2}{nm}\sum_{i=1}^{n}\sum_{j=1}^{m}k(x_{i},y_{j}) + \frac{1}{n^{2}}\sum_{i,j=1}^{n}k(x_{i},x_{j})$$

Sample complexity: $\mathcal{O}(m^{-1/2} + n^{-1/2})$

- n: no. of observed data samples (fixed)
- To reduce error by half, need four times the no. of samples from $\mathbb{P}_{ heta}$

Estimating Maximum Mean Discrepancy

For a reproducing kernel k, the MMD between distributions \mathbb{P} and \mathbb{Q} is

$$\mathsf{MMD}_k^2(\mathbb{P}^m,\mathbb{Q}^n) = \mathbb{E}_{y,y'\sim\mathbb{P}}[k(y,y')] - 2\mathbb{E}_{y\sim\mathbb{P},x\sim\mathbb{Q}}[k(x,y)] + \mathbb{E}_{x,x'\sim\mathbb{Q}}[k(x,x')]$$

V-statistic estimator for MMD computed using samples $\{y_i\}_{i=1}^m \sim \mathbb{P}$ and $\{x_i\}_{i=1}^n \sim \mathbb{Q}$:

$$\mathsf{MMD}_{k}^{2}(\mathbb{P}^{m},\mathbb{Q}^{n}) = \frac{1}{m^{2}}\sum_{i,j=1}^{m}k(y_{i},y_{j}) - \frac{2}{nm}\sum_{i=1}^{n}\sum_{j=1}^{m}k(x_{i},y_{j}) + \frac{1}{n^{2}}\sum_{i,j=1}^{n}k(x_{i},x_{j})$$

Sample complexity: $O(m^{-1/2} + n^{-1/2})$

- n: no. of observed data samples (fixed)
- To reduce error by half, need four times the no. of samples from $\mathbb{P}_{ heta}$

Outline

Optimally-weighted (OW) estimator of MMD

Proposed Optimally-weighted Estimator of MMD

We estimate the MMD as

$$\mathsf{MMD}_{k}^{2}(\mathbb{P}_{\theta}^{m,w},\mathbb{Q}^{n}) = \sum_{i,j=1}^{m} w_{i}w_{j}k(y_{i},y_{j}) - \frac{2}{n}\sum_{i=1}^{n}\sum_{j=1}^{m} w_{j}k(x_{i},y_{j}) + \frac{1}{n^{2}}\sum_{i,j=1}^{n}k(x_{i},x_{j}),$$

where the weights w_i chosen optimally.

Deriving the optimal weights Let $\mathbb{P}_{\theta}^{m,w} = \sum_{i=1}^{m} w_i \delta_{y_i} = \sum_{i=1}^{m} w_i \delta_{G_{\theta}}(u_i).$

Using the reverse triangle inequality, we get

$$\left|\mathsf{MMD}_k(\mathbb{P}_{ heta},\mathbb{Q})-\mathsf{MMD}_k(\mathbb{P}_{ heta}^{m,w},\mathbb{Q})
ight|\leq\mathsf{MMD}_k(\mathbb{P}_{ heta},\mathbb{P}_{ heta}^{m,w}).$$

Let $c : \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ be a reproducing kernel s.t. $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_{c}$.

Then, the error upper bounded can be written as (see paper for proof):

$$\mathsf{MMD}_{k}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{m, w}) = K \times \mathsf{MMD}_{c}\left(\mathbb{U}, \sum_{i=1}^{m} w_{i} \delta_{u_{i}}\right)$$

The weights minimising this upper bound are:

$$w^* = \mathop{\mathrm{arg\,min}}_{w \in \mathbb{R}^m} \mathsf{MMD}_c\left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}
ight)$$

Weights can be obtained in closed-form as $\mathbb U$ is a simple distribution

Deriving the optimal weights Let $\mathbb{P}_{\theta}^{m,w} = \sum_{i=1}^{m} w_i \delta_{y_i} = \sum_{i=1}^{m} w_i \delta_{G_{\theta}}(u_i).$

Using the reverse triangle inequality, we get

$$\left|\mathsf{MMD}_k(\mathbb{P}_ heta,\mathbb{Q})-\mathsf{MMD}_k(\mathbb{P}_ heta^{m,w},\mathbb{Q})
ight|\leq\mathsf{MMD}_k(\mathbb{P}_ heta,\mathbb{P}_ heta^{m,w}).$$

Let $c: \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ be a reproducing kernel s.t. $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_{c}$.

Then, the error upper bounded can be written as (see paper for proof):

$$\mathsf{MMD}_k(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{m, w}) = \mathsf{K} \times \mathsf{MMD}_c\left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}\right).$$

The weights minimising this upper bound are:

$$w^* = \mathop{\mathrm{arg\,min}}_{w \in \mathbb{R}^m} \mathsf{MMD}_c\left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}
ight)$$

Weights can be obtained in closed-form as ${\mathbb U}$ is a simple distribution.

Deriving the optimal weights Let $\mathbb{P}_{\theta}^{m,w} = \sum_{i=1}^{m} w_i \delta_{y_i} = \sum_{i=1}^{m} w_i \delta_{G_{\theta}}(u_i).$

Using the reverse triangle inequality, we get

$$\left|\mathsf{MMD}_k(\mathbb{P}_ heta,\mathbb{Q})-\mathsf{MMD}_k(\mathbb{P}_ heta^{m,w},\mathbb{Q})
ight|\leq\mathsf{MMD}_k(\mathbb{P}_ heta,\mathbb{P}_ heta^{m,w}).$$

Let $c: \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ be a reproducing kernel s.t. $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_c$.

Then, the error upper bounded can be written as (see paper for proof):

$$\mathsf{MMD}_k(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{m, w}) = \mathcal{K} \times \mathsf{MMD}_c\left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}\right).$$

The weights minimising this upper bound are:

$$w^* = \operatorname*{arg\,min}_{w \in \mathbb{R}^m} \operatorname{\mathsf{MMD}}_c \left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}
ight)$$

Weights can be obtained in closed-form as $\ensuremath{\mathbb{U}}$ is a simple distribution.

Theoretical guarantees

Assumptions:

- c is a Matérn kernel of order u_c on $\mathcal{U} \subset \mathbb{R}^s$
- k is Matérn or squared-exponential kernel of order ν_k
- $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_{c}$ holds

Sample complexity result for our estimator:

$$\left|\mathsf{MMD}_{k}(\mathbb{P}_{\theta},\mathbb{Q})-\mathsf{MMD}_{k}(\mathbb{P}_{\theta}^{m,w},\mathbb{Q})\right|=\mathcal{O}(m^{-\frac{\nu_{c}}{s}-\frac{1}{2}}).$$

ullet Our method has improved sample complexity over V-statistic for any ν_c and s

Choice of kernel *c*:

- depends on smoothness of kernel k and generator $G_{ heta}$
- ullet as smooth as possible, but not smoother than $G_ heta$ or k

Theoretical guarantees

Assumptions:

- c is a Matérn kernel of order u_c on $\mathcal{U} \subset \mathbb{R}^s$
- k is Matérn or squared-exponential kernel of order ν_k
- $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_{c}$ holds

Sample complexity result for our estimator:

$$\left|\mathsf{MMD}_{k}(\mathbb{P}_{\theta},\mathbb{Q})-\mathsf{MMD}_{k}(\mathbb{P}_{\theta}^{m,w},\mathbb{Q})\right|=\mathcal{O}(m^{-\frac{\nu_{c}}{s}-\frac{1}{2}}).$$

ullet Our method has improved sample complexity over V-statistic for any ν_c and s

Choice of kernel *c*:

- depends on smoothness of kernel k and generator G_{θ}
- as smooth as possible, but not smoother than $G_{ heta}$ or k

Theoretical guarantees

Assumptions:

- c is a Matérn kernel of order u_c on $\mathcal{U} \subset \mathbb{R}^s$
- k is Matérn or squared-exponential kernel of order ν_k
- $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_{c}$ holds

Sample complexity result for our estimator:

$$\left|\mathsf{MMD}_{k}(\mathbb{P}_{\theta},\mathbb{Q})-\mathsf{MMD}_{k}(\mathbb{P}_{\theta}^{m,w},\mathbb{Q})\right|=\mathcal{O}(m^{-\frac{\nu_{c}}{s}-\frac{1}{2}}).$$

ullet Our method has improved sample complexity over V-statistic for any ν_c and s

Choice of kernel c:

- depends on smoothness of kernel k and generator $G_{ heta}$
- ullet as smooth as possible, but not smoother than $G_ heta$ or k

Computational cost

Total cost of the method is

- cost of simulating from the model $\mathcal{O}(mC_{\text{gen}})$
 - often the bottleneck
- the cost of estimating MMD
 - V-statistic: $\mathcal{O}(m^2 + mn + n^2)$
 - Optimally-weighted: $\mathcal{O}(m^3 + mn + n^2)$

Figure: When to use our optimally-weighted estimator over the V-statistic.

Outline

1 Introduction

2 Optimally-weighted (OW) estimator of MMD

Benchmarking on popular simulators

We fix θ for each model and estimate the MMD² between \mathbb{P}_{θ}^{m} and \mathbb{P}_{θ}^{n} with n = 10,000 and m = 256.

Model	5	d	IID V-stat	IID OW (ours)
g-and-k	1	1	2.25 (1.52)	0.086 (0.049)
Two moons	2	2	2.36 (1.94)	0.057 (0.054)
Bivariate Beta	5	2	2.13 (1.17)	0.555 (0.227)
MA(2)	12	10	2.42 (0.796)	0.705 (0.107)
M/G/1 queue	10	5	2.52 (1.19)	1.71 (0.568)
Lotka-Volterra	600	2	2.13 (1.10)	2.04 (0.956)

- Our estimator achieves the lowest error for all the models when $\{u_i\}_{i=1}^m$ are taken to be iid uniforms.
- Magnitude of this improvement reduces as s (the dimension of \mathcal{U}) increases.

Varying dimensions s and dMultivariate g-and-k distribution

Two formulation of the model:

- **1** $(G_{\theta}, \mathbb{U}_{\theta})$ where $\mathbb{U} = \mathcal{N}(0, I_s)$
- ② $(ilde{\mathbb{U}}, ilde{\mathcal{G}}_{ heta})$ where $ilde{\mathbb{U}}=\mathsf{Unif}(0,1)^s$

Observations:

- Our estimator performs better than the V-statistic even in dimensions as high as 100.
- Gaussian embedding is better than uniform for this model.

Varying dimensions s and dMultivariate g-and-k distribution

Two formulation of the model:

- $(G_{\theta}, \mathbb{U}_{\theta})$ where $\mathbb{U} = \mathcal{N}(0, I_s)$
- ② $(\tilde{\mathbb{U}}, \tilde{G}_{\theta})$ where $\tilde{\mathbb{U}} = \mathsf{Unif}(0, 1)^s$

Observations:

- Our estimator performs better than the V-statistic even in dimensions as high as 100.
- Gaussian embedding is better than uniform for this model.

Varying choice of kernels k and c

Multivariate g-and-k distribution

Observations:

- Our method performs best when k is the squared-exponential (SE) kernel, i.e., when it is infinitely smooth.
- Combination of *c* as SE and *k* as the Matérn kernel is the worst.
- From a computational viewpoint, it is always beneficial to take *k* to be very smooth.

Performance vs. computational cost

Multivariate g-and-k distribution

We compare estimators for a fixed computational budget.

- We vary *n* and take m = n for the V-statistic and $m = 2n^{2/3}$ for the OW estimator.
- Our estimator achieves lower error on average than the V-statistic.
- It is preferable to use the OW estimator even for a computationally cheap simulator like the multivariate g-and-k.

Composite goodness-of-fit test based on MMD²

Multivariate g-and-k distribution

Suppose we have iid draws from distribution \mathbb{Q} .

- Null hypothesis: \mathbb{Q} is an element of model $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$
- Alternate hypothesis: \mathbb{Q} is not an element of $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$
- \mathbb{Q} is multivariate g-and-k with $heta_4=0.1$ (null) or $heta_4=0.5$ (alternative)
- Test requires performing two steps repeatedly:
 - (1) estimating parameters $\hat{\theta}$ using MMD
 - 2 estimating MMD^2 between \mathbbm{Q} and $\mathbb{P}\hat{\theta}$

Composite goodness-of-fit test based on MMD²

Multivariate g-and-k distribution

Suppose we have iid draws from distribution \mathbb{Q} .

- Null hypothesis: \mathbb{Q} is an element of model $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$
- Alternate hypothesis: \mathbb{Q} is not an element of $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$
- \mathbb{Q} is multivariate g-and-k with $heta_4=0.1$ (null) or $heta_4=0.5$ (alternative)
- Test requires performing two steps repeatedly:
 - (1) estimating parameters $\hat{\theta}$ using MMD
 - 2 estimating MMD^2 between $\mathbb Q$ and $\mathbb P \hat{\theta}$

Table: Fraction of repeats for which the null was rejected. An ideal test would have 0.05 when the null holds, and 1 otherwise.

Cases	IID V-stat	IID OW (ours)
$ heta_4=0.1$ (null holds)	0.040	0.047
$ heta_4=0.5$ (alternative holds)	0.040	0.413

Large scale offshore wind farm model

We apply ABC to a low-order wake model [Kirby et al., 2023]

- Simulates estimate of the farm-averaged local turbine thrust coefficient
- Parameter θ is the angle (in degrees) at which the wind is blowing
- Challenge: simulating one data point takes $\approx 2 \text{ mins}$
- Generating 1000 datasets with m=10 took pprox 245 hours
- Our method can achieve similar performance as the V-statistic with much smaller *m*, saving hours of computation time.

Conclusion

- We proposed an optimally-weighted MMD estimator which has improved sample complexity than the V-statistic.
- Our estimator requires fewer data points than alternatives in this setting, making it especially advantageous for computationally expensive simulators.
- Limitations and open questions:
 - Parameterisation of a simulator through generator G_{θ} and measure \mathbb{U} is usually not unique.
 - We focus on the MMD and not its gradient.
 - Our ideas can potentially translate to other distances, such as the Wasserstein distance and Sinkhorn divergence.

Conclusion

- We proposed an optimally-weighted MMD estimator which has improved sample complexity than the V-statistic.
- Our estimator requires fewer data points than alternatives in this setting, making it especially advantageous for computationally expensive simulators.
- Limitations and open questions:
 - Parameterisation of a simulator through generator G_{θ} and measure \mathbb{U} is usually not unique.
 - We focus on the MMD and not its gradient.
 - Our ideas can potentially translate to other distances, such as the Wasserstein distance and Sinkhorn divergence.

References

- Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2019).
 Approximate Bayesian computation with the Wasserstein distance.
 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2):235–269.
- Briol, F.-X., Barp, A., Duncan, A. B., and Girolami, M. (2019). Statistical inference for generative models with maximum mean discrepancy. arXiv:1906.05944.
- Dellaporta, C., Knoblauch, J., Damoulas, T., and Briol, F.-X. (2022).
 Robust Bayesian inference for simulator-based models via the MMD posterior bootstrap.
 In <u>Proceedings of the International Conference in Artificial Intelligence and Statistics</u>, pages 943–970.
- Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2019).
 Sample complexity of Sinkhorn divergences.
 In International Conference on Artificial Intelligence and Statistics.
 - Gretton A Borgwardt K Rasch M I and Scholkopf B (2012)