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Setting

Inference for simulator-based models with intractable likelihoods.

Data {xi}ni=1 ⊆ X ⊆ Rd denoted by empirical distribution Qn

Simulator Pθ = {Pθ : θ ∈ Θ}, characterised through generative process (Gθ,U), where
Gθ : U → X and U is a distribution on U ⊂ Rs

The likelihood associated to Pθ is unknown

We can sample y ∼ Pθ by

1 Sampling u ∼ U, U being uniform or Gaussian distribution

2 Applying the generator y = Gθ(u)
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Discrepancy-based Likelihood-free Inference

Suppose D is a discrepancy measure between probability distributions.

Approximate Bayesian computation
Allows sampling from the approximate posterior p(θ|D(Pθ,Qn) < ϵ).

Minimum distance estimation:
Solve the optimisation problem

θ̂Dm = argmin
θ∈Θ

D(Pθ,Qn).

However, we can’t compute D(Pθ,Qn) but can only estimate it given samples {yi}mi=1 from Pθ

⇒ estimating D accurately in few samples is key!
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Choice of discrepancy D

We want discrepancy measure that can be estimated efficiently from samples

D(Pθ,Qn) ≈ D(Pm
θ ,Qn)

Efficient in terms of sample complexity

Popular discrepancies for likelihood-free inference:

KL divergence [Jiang, 2018]

Wasserstein distance [Bernton et al., 2019]

Sinkhorn divergence [Genevay et al., 2019]

Classification accuracy [Gutmann et al., 2017]

Maximum mean discrepancy [Gretton et al., 2012]
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Maximum mean discrepancy (MMD)
Maximum mean discrepancy (MMD) is a notion of distance between probability distributions.
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Advantages of MMD:

Sample complexity of O(m−1/2), better than its alternatives

Desirable properties — leads to consistent and robust estimators

Applicable on any data type for which a kernel can be defined

Hence, it is used in many likelihood-free inference frameworks, e.g.
[Park et al., 2015, Briol et al., 2019, Dellaporta et al., 2022]
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Estimating Maximum Mean Discrepancy

For a reproducing kernel k , the MMD between distributions P and Q is

MMD2
k(Pm,Qn) = Ey ,y ′∼P[k(y , y

′)] − 2Ey∼P,x∼Q[k(x , y)] + Ex ,x ′∼Q[k(x , x
′)]

V-statistic estimator for MMD computed using samples {yi}mi=1 ∼ P and {xi}ni=1 ∼ Q:

MMD2
k(Pm,Qn) =

1

m2

m∑
i ,j=1

k(yi , yj) − 2

nm

n∑
i=1

m∑
j=1

k(xi , yj) +
1

n2

n∑
i ,j=1

k(xi , xj)

Sample complexity: O(m−1/2 + n−1/2)

n: no. of observed data samples (fixed)

To reduce error by half, need four times the no. of samples from Pθ
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Proposed Optimally-weighted Estimator of MMD
We estimate the MMD as

MMD2
k(P

m,w
θ ,Qn) =

m∑
i ,j=1

wiwjk(yi , yj) − 2

n

n∑
i=1

m∑
j=1

wjk(xi , yj) +
1

n2

n∑
i ,j=1

k(xi , xj),

where the weights wi chosen optimally.

equally-weighted

True

optimally-weighted 
(ours) 

9 / 22



Deriving the optimal weights
Let Pm,w

θ =
∑m

i=1 wiδyi =
∑m

i=1 wiδGθ(ui ).

Using the reverse triangle inequality, we get∣∣MMDk(Pθ,Q)−MMDk(Pm,w
θ ,Q)

∣∣ ≤ MMDk(Pθ,Pm,w
θ ).

Let c : U × U → R be a reproducing kernel s.t. k(x , · ) ◦ Gθ ∈ Hc .

Then, the error upper bounded can be written as (see paper for proof):

MMDk(Pθ,Pm,w
θ ) = K ×MMDc

(
U,

m∑
i=1

wiδui

)
.

The weights minimising this upper bound are:

w∗ = argmin
w∈Rm

MMDc

(
U,

m∑
i=1

wiδui

)
Weights can be obtained in closed-form as U is a simple distribution.
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Theoretical guarantees

Assumptions:

c is a Matérn kernel of order νc on U ⊂ Rs

k is Matérn or squared-exponential kernel of order νk

k(x , · ) ◦ Gθ ∈ Hc holds

Sample complexity result for our estimator:∣∣MMDk(Pθ,Q)−MMDk(Pm,w
θ ,Q)

∣∣ = O(m− νc
s
− 1

2 ).

Our method has improved sample complexity over V-statistic for any νc and s

Choice of kernel c:

depends on smoothness of kernel k and generator Gθ

as smooth as possible, but not smoother than Gθ or k
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Computational cost

Total cost of the method is

1 cost of simulating from the model
O(mCgen)

▶ often the bottleneck

2 the cost of estimating MMD

▶ V-statistic: O(m2 +mn + n2)

▶ Optimally-weighted: O(m3 +mn + n2)

Simulator
costly?

Use optimal
weights (ours)

Yes

Use V-statistic

Yes

NoNo

Figure: When to use our optimally-weighted
estimator over the V-statistic.
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Benchmarking on popular simulators

We fix θ for each model and estimate the MMD2 between Pm
θ and Pn

θ with n = 10, 000 and
m = 256.

Model s d IID V-stat IID OW (ours)

g-and-k 1 1 2.25 (1.52) 0.086 (0.049)
Two moons 2 2 2.36 (1.94) 0.057 (0.054)

Bivariate Beta 5 2 2.13 (1.17) 0.555 (0.227)
MA(2) 12 10 2.42 (0.796) 0.705 (0.107)

M/G/1 queue 10 5 2.52 (1.19) 1.71 (0.568)
Lotka-Volterra 600 2 2.13 (1.10) 2.04 (0.956)

Our estimator achieves the lowest error for all the models when {ui}mi=1 are taken to be
iid uniforms.

Magnitude of this improvement reduces as s (the dimension of U) increases.
14 / 22



Varying dimensions s and d
Multivariate g-and-k distribution

Two formulation of the model:

1 (Gθ,Uθ) where U = N (0, Is)

2 (Ũ, G̃θ) where Ũ = Unif(0, 1)s

Observations:

Our estimator performs better than the
V-statistic even in dimensions as high as
100.

Gaussian embedding is better than
uniform for this model.

25 50 75 100
Dimension, s

10 4

10 3

M
M

D2 (
m

,
n )

n = 10,000, m = 500

V-statistic
: Uniform
: Gaussian
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Varying choice of kernels k and c
Multivariate g-and-k distribution

100 200 300 400 500
No. of samples, m

10 3

10 2

M
M

D2 k(
m

,
n )

s = d = 10, n = 10,000

c: SE, k: Matern
c: Matern, k: Matern
c: SE, k: SE
c: Matern, k: SE

Observations:

Our method performs best when k is the
squared-exponential (SE) kernel, i.e.,
when it is infinitely smooth.

Combination of c as SE and k as the
Matérn kernel is the worst.

From a computational viewpoint, it is
always beneficial to take k to be very
smooth.
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Performance vs. computational cost
Multivariate g-and-k distribution

We compare estimators for a fixed computa-
tional budget.

We vary n and take m = n for the
V-statistic and m = 2n2/3 for the OW
estimator.

Our estimator achieves lower error on
average than the V-statistic.

It is preferable to use the OW estimator
even for a computationally cheap
simulator like the multivariate g-and-k.

10 2 10 1 100

Total cost [seconds]

10 3

10 2

M
M

D2 (
m

,
n )

n=200
n=500

n=1000
n=2000

V-statistic
OW (ours)
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Composite goodness-of-fit test based on MMD2

Multivariate g-and-k distribution

Suppose we have iid draws from distribution Q.

Null hypothesis: Q is an element of model {Pθ : θ ∈ Θ}
Alternate hypothesis: Q is not an element of {Pθ : θ ∈ Θ}
Q is multivariate g-and-k with θ4 = 0.1 (null) or θ4 = 0.5 (alternative)

Test requires performing two steps repeatedly:

1 estimating parameters θ̂ using MMD

2 estimating MMD2 between Q and Pθ̂

2.6 3.1θ1

↔ 2

0.9 1.1θ2

↔ 3

−0.2 0.5θ3

↔ 10

−0.05 0.25θ5

↔ 2
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Composite goodness-of-fit test based on MMD2

Multivariate g-and-k distribution

Suppose we have iid draws from distribution Q.

Null hypothesis: Q is an element of model {Pθ : θ ∈ Θ}
Alternate hypothesis: Q is not an element of {Pθ : θ ∈ Θ}
Q is multivariate g-and-k with θ4 = 0.1 (null) or θ4 = 0.5 (alternative)

Test requires performing two steps repeatedly:

1 estimating parameters θ̂ using MMD

2 estimating MMD2 between Q and Pθ̂

Table: Fraction of repeats for which the null was rejected. An ideal test would have 0.05 when the null
holds, and 1 otherwise.

Cases IID V-stat IID OW (ours)

θ4 = 0.1 (null holds) 0.040 0.047
θ4 = 0.5 (alternative holds) 0.040 0.413
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Large scale offshore wind farm model
We apply ABC to a low-order wake model [Kirby et al., 2023]

Simulates estimate of the farm-averaged
local turbine thrust coefficient

Parameter θ is the angle (in degrees) at
which the wind is blowing

Challenge: simulating one data point
takes ≈ 2 mins

Generating 1000 datasets with m = 10
took ≈ 245 hours

Our method can achieve similar
performance as the V-statistic with much
smaller m, saving hours of computation
time.
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Conclusion

We proposed an optimally-weighted MMD estimator which has improved sample
complexity than the V-statistic.

Our estimator requires fewer data points than alternatives in this setting, making it
especially advantageous for computationally expensive simulators.

Limitations and open questions:

▶ Parameterisation of a simulator through generator Gθ and measure U is usually not unique.

▶ We focus on the MMD and not its gradient.

▶ Our ideas can potentially translate to other distances, such as the Wasserstein distance and
Sinkhorn divergence.
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