Optimally-weighted estimators the maximum mean discrepancy likelihood-free inference

Ayush Bharti, Masha Naslidnyk, Oscar Key, Samuel Kaski, François-Xavier Briol

Introduction

- Simulators are mechanistic models of real-world phenomenon that are used widely in many domains of science, medicine and engineering. However, their likelihood functions are intractable.
- Likelihood-free inference (LFI) methods, such as approximate Bayesian computation and minimum distance estimation, rely on computing distances between observed and simulated data.
- Maximum mean discrepancy (MMD) is a popular choice of distance:
- Desirable properties: leads to consistent and robust estimators
- Applicable on any data type for which a kernel can be defined
- Sample complexity of $\mathcal{O}(m^{-1/2})$, *m* being no. of simulated samples
- Challenge in LFI: Large computational cost of simulating data
- **Contribution:** MMD estimator with improved sample complexity

Methodology

Background

- Data $\{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator $\mathcal{P}_{\theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, characterised by (G_{θ}, \mathbb{U})
- To sample $y \sim \mathbb{P}_{\theta}$, (1) sample $u \sim \mathbb{U}$, from base space $\mathcal{U} \subset \mathbb{R}^{s}$, (2) apply the generator $y = G_{\theta}(u)$
- Task: Estimate θ given \mathbb{Q}^n
- The MMD between \mathbb{P} and \mathbb{Q} is the distance between their embeddings in RKHS \mathcal{H}_k associated with kernel k:

 $\mathsf{MMD}_{k}^{2}(\mathbb{P}_{\theta},\mathbb{Q}) = \mathbb{E}_{y,y'\sim\mathbb{P}_{\theta}}[k(y,y')] - 2\mathbb{E}_{y\sim\mathbb{P}_{\theta},x\sim\mathbb{Q}}[k(x,y)] + \mathbb{E}_{x,x'\sim\mathbb{Q}}[k(x,x')]$ **Optimally-weighted MMD estimator**

We use Bayesian quadrature weights to estimate integrals wrt simulator.

$$\mathsf{MMD}_{k}^{2}(\mathbb{P}_{\theta}^{m,w},\mathbb{Q}^{n}) = \sum_{i,j=1}^{m} w_{i}w_{j}k(y_{i},y_{j}) - \frac{2}{n}\sum_{i=1}^{n}\sum_{j=1}^{m} w_{j}k(x_{i},y_{j}) + \frac{1}{n^{2}}\sum_{i,j=1}^{n} \mathsf{Let} \mathbb{P}_{\theta}^{m,w} = \sum_{i=1}^{m} w_{i}\delta_{y_{i}} = \sum_{i=1}^{m} w_{i}\delta_{G_{\theta}(u_{i})}.$$

Using the reverse triangle inequality, we get

 $|\mathsf{MMD}_k(\mathbb{P}_{\theta}, \mathbb{Q}) - \mathsf{MMD}_k(\mathbb{P}_{\theta}^{m, w}, \mathbb{Q})| \leq \mathsf{MMD}_k(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{m, w}).$ Let $c : \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ be a reproducing kernel of order ν_c s.t. $k(x, \cdot) \circ G_{\theta} \in \mathcal{H}_c$. Then, the error upper bound can be written as:

$$\mathsf{MMD}_k(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{m, w}) = K \times \mathsf{MMD}_c\left(\mathbb{U}, \sum_{i=1}^m w_i \delta_{u_i}\right)$$

The weights minimising this upper bound are obtained in closed-form:

$$w^{\star} = \underset{w \in \mathbb{R}^{m}}{\operatorname{arg\,min\,}} \operatorname{MMD}_{C} \left(\mathbb{U}, \sum_{i=1}^{m} w_{i} \delta_{u_{i}} \right) = \underset{w \in \mathbb{R}^{m}}{\operatorname{arg\,min\,}} \operatorname{MMD}_{C}^{2} \left(\mathbb{U}, \sum_{i=1}^{m} w_{i} \delta_{u_{i}} \right)$$

Sample complexity: $\mathcal{O}(m^{-\nu_{c}/s-1/2}) \Rightarrow$ improved rate for any ν_{c} and $s!$

 $\sum k(x_i, x_j)$

 $W_i \delta_{U_i}$

We enable scalable inference for computationally expensive scientific simulator-based models.

When to use our method:

Simulator costly?

No

Yes

Use optimal weights (ours)

Take a picture to download the full paper

Benchmarking on popular simulators:

Model	5	d	IID V-stat	IID OW (ours)
g-and-k	1	1	2.25 (1.52)	0.086 (0.049)
Two moons	2	2	2.36 (1.94)	0.057 (0.054)
Bivariate Beta	5	2	2.13 (1.17)	0.555 (0.227)
MA(2)	12	10	2.42 (0.796)	0.705 (0.107)
M/G/1 queue	10	5	2.52 (1.19)	1.71 (0.568)
Lotka-Volterra	600	2	2.13 (1.10)	2.04 (0.956)

No. of samples, m

Performance vs. computational cost

