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Introduction

e Simulators are mechanistic models of real-world phenomenon that are tiﬁ C Si m u I atO r- ba SEd m Od e I S o

used widely in many domains of science, medicine and engineering.

Varying choice of k and c:
s=d =10, n = 10,000

1072

—— c: SE, k: Matern
c: Matern, k: Matern
—®— C: SE, k: SE
) —@— c: Matern, k: SE

However, their likelihood functions are intractable.
e Likelihood-free inference (LFI) methods, such as approximate Bayesian
computation and minimum distance estimation, rely on computing dis-

tances between observed and simulated data.

e Maximum mean discrepancy (MMD) is a popular choice of distance:

- Desirable properties: leads to consistent and robust estimators 100 200 300 400 500

No. of samples, m

- Applicable on any data type for which a kernel can be defined

- Sample complexity of O(m~1/?), m being no. of simulated samples

Varying dimensions s and d:

e Challenge in LFI: Large computational cost of simulating data n = 10,000, m = 500

e Contribution: MMD estimator with improved sample complexity | e
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e Data {x;}"_, C X C R denoted by empirical distribution Q" %  Vestatistic
e Simulator Py = {IPg : 6 € ©}, characterised by (Gy, U) 10~ ~—— U: Uniform
e To sample y ~ Py, (1) sample u ~ U, from base space 4 C R®, (2) apply When to use our method: — U:Gaussian
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the generator y = Gy(u)

Dimension, s

e Task: Estimate 6 given Q"

e The MMD between P and QQ is the distance between their embeddings Performance vs. computational cost
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Let ¢ : U xU — R beareproducing kernel of order v s.t. k(x, -)oGy € H.. 0.15 010 i
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The weights minimising this upper bound are obtained in closed-form:

w* = argmin MMD, (U, Z W,-(Su,) — arg min MMD? (U Z Wiéu,)
=1
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Sample complexity: O(m~</*~1/2) = improved rate for any v. and s!



