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Introduction
•Simulators are mechanistic models of real-world phenomenon that are
used widely in many domains of science, medicine and engineering.
However, their likelihood functions are intractable.

• Likelihood-free inference (LFI) methods, such as approximate Bayesian
computation andminimumdistance estimation, rely on computing dis-
tances between observed and simulated data.

•Maximum mean discrepancy (MMD) is a popular choice of distance:
–Desirable properties: leads to consistent and robust estimators
–Applicable on any data type for which a kernel can be defined
–Sample complexity of O(m−1/2), m being no. of simulated samples

•Challenge in LFI: Large computational cost of simulating data
•Contribution: MMD estimator with improved sample complexity
Methodology
Background
•Data {xi}ni=1 ⊆ X ⊆ Rd denoted by empirical distribution Qn
•Simulator Pθ = {Pθ : θ ∈ Θ}, characterised by (Gθ,U)
•To sample y ∼ Pθ, (1) sample u ∼ U, from base space U ⊂ Rs , (2) apply
the generator y = Gθ(u)

•Task: Estimate θ given Qn
•TheMMDbetween P andQ is the distance between their embeddings
in RKHS Hk associated with kernel k :
MMD2k(Pθ,Q) = Ey ,y ′∼Pθ[k(y , y ′)]− 2Ey∼Pθ,x∼Q[k(x, y)] + Ex,x ′∼Q[k(x, x ′)]

Optimally-weighted MMD estimator
Weuse Bayesian quadratureweights to estimate integrals wrt simulator.
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Let Pm,wθ =
∑m
i=1wiδyi =

∑m
i=1wiδGθ(ui).Using the reverse triangle inequality, we get∣∣MMDk(Pθ,Q)−MMDk(Pm,wθ ,Q)∣∣ ≤MMDk(Pθ,Pm,wθ ).

Let c : U×U → R be a reproducing kernel of order νc s.t. k(x, ·)◦Gθ ∈ Hc .
Then, the error upper bound can be written as:
MMDk(Pθ,Pm,wθ ) = K ×MMDc
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The weights minimising this upper bound are obtained in closed-form:
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Sample complexity: O(m−νc/s−1/2) ⇒ improved rate for any νc and s !

We enable scalable inference for
computationally expensive scien-
tific simulator-based models.
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Benchmarking on popular simulators:

Model s d IID V-stat IID OW (ours)
g-and-k 1 1 2.25 (1.52) 0.086 (0.049)

Two moons 2 2 2.36 (1.94) 0.057 (0.054)
Bivariate Beta 5 2 2.13 (1.17) 0.555 (0.227)

MA(2) 12 10 2.42 (0.796) 0.705 (0.107)
M/G/1 queue 10 5 2.52 (1.19) 1.71 (0.568)
Lotka-Volterra 600 2 2.13 (1.10) 2.04 (0.956)

Varying choice of k and c :
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Varying dimensions s and d :
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Performance vs. computational cost
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Wind farm experiment:
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