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Introduction
• Simulators are mechanistic models of real-world phenomenon that are used

widely in many domains of science, medicine and engineering. However, their
likelihood functions are intractable.

• Simulation-based inference (SBI) methods, such as approximate Bayesian com-
putation (ABC) and neural posterior estimation (NPE), are used to fit such
intractable models, which rely on simulating summary statistics.
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• However, SBI methods are unreliable when the model is misspecified,
which occurs when the true data-generating process does not lie within the
family of distributions defined by the model.

Method: SBI with robust statistics
Observation 1: Even if the model is misspecified, it may still be able to match
the statistics, and hence, be “well-specified” in light of those statistics.
Observation 2: under misspecification, the model may be unable to match the
observed statistic for any parameter, forcing the inference method to generalize
outside its training distribution, causing shifts in the posterior.
⇒ If we pick statistics appropriately, we can be robust!
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We introduce a regularized loss function that balances between learning statis-
tics that are informative about the parameters, and penalizing those choices of
statistics or features of the data that the model is unable to replicate.
Advantages of our method:
• Applies to all statistics-based SBI methods
• Performs reasonably well even when the model is well-specified

Robustness to model misspecification
in simulation-based inference is a
statistics selection problem.

Observed statistic Simulated statistic

Statistic 1

St
at

is
tic

 2
St

at
is

tic
 2

Statistic 1

Well-specified scenario

Misspecified scenario

Parameter

D
en

si
ty

D
en

si
ty

True parameter

Parameter

Inference

Under misspecification, observed statistic becomes an out-of-distribution sample.

Idea: choose statistics s.t. the observed statistic remains an in-distribution sample

Solution: learn parameters and statistics jointly using the regularized loss function

proposed loss = usual loss +        (simulated statistics, observed statistic)

encodes trade-off between efficiency and robustness
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Synthetic experiments
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