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Learning Robust Statistics for Simulation-
based Inference under Model Misspecifi-
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= Simulators are mechanistic models of real-world phenomenon that are used
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widely in many domains of science, medicine and engineering. However, their Well-specified scenario & ¢
likelihood functions are intractable. 12 _gegfiziermm)* 8 R
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which occurs when the true data-generating process does not lie within the (%’ S'10 )
family of distributions defined by the model. 5
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Method: SBI with robust statistics Statistic 1 Parameter 0,
Observation 1: Even if the model is misspecified, it may still be able to match Observed statistic ® Simulated statistic True parameter
the statistics, and hence, be “well-specified” in light of those statistics.
Observation 2: under misspecification, the model may be unable to match the
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observed statistic for any parameter, forcing the inference method to generalize P , ObsServed Sialistic becomes an out-or-aistribution sample. 20 T LRI
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outside its training distribution, causing shifts in the posterior. Idea: choose statistics s.t. the observed statistic remains an in-distribution sample =N i
= If we pick statistics appropriately, we can be robust! -
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NPE Our method A Solution: learn parameters and statistics jointly using the regularized loss function O
X 3000 . + Simulated —— True 6 : : [ ° °
™ —200 @\ \'\\“ Observed 20 B Ours 1
= £ 2000 NPE — + : e L |
a0 : . proposed loss = usual loss + \D(simulated statistics, observed statistic) Real-world experiment
%5 —600 d Simulated % 1000 10 > —80 starting point — Real data
_goo L Observed | Ry 0 0 A : encodes trade-off between efficiency and robustness ~90 ( N e
_ZQOQ 0 —ZOQ | 0 2.0 SéO 7.2 — 100 |
Statistic 1 Statistic 1 1 D : maximum mean discrepancy %_110
3
We introduce a regularized loss function that balances between learning statis- oo
tics that are informative about the parameters, and penalizing those choices of o S
statistics or features of the data that the model is unable to replicate. Take a picture to 0 ® 0 Dnebeymd 0
Advantages of our method: download the full paper ' 5
= Applies to all statistics-based SBI methods O %
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» Performs reasonably well even when the model is well-specified




