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Inference problem

Data y = {yi}ni=1 ⊆ X ⊆ Rd denoted by empirical distribution Qn

Model PΘ = {Pθ : θ ∈ Θ}

Aim: Estimate θ given data y (maximizing likelihood, sampling from posterior)

Assumption: Model is “correct”, i.e., Qn ∈ PΘ

Problem: Model misspecification, i.e. Qn /∈ PΘ ⇒ ∄θ ∈ Θ s.t. Pθ = Qn

▶ Stochasticity in data collection process (outliers, missing data, broken independence
assumption)

▶ “All models are wrong...”

Inference outcomes are unreliable under misspecification
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Inference for simulators

Data y = {yi}ni=1 ⊆ X ⊆ Rd denoted by empirical distribution Qn

Simulator-based model PΘ = {Pθ : θ ∈ Θ}

Pθ is intractable, but sampling x ∼ Pθ is straightforward

Aim: Estimate θ given data y (maximizing likelihood, sampling from posterior)

Simulators in sciences and engineering:
▶ Population genetics [Pritchard et al., 1999]
▶ Ecology and evolution [Beaumont, 2010]
▶ Astrophysics [Akeret et al., 2015]
▶ Epidemiology [Kypraios et al., 2017]
▶ Radio communications [Bharti et al., 2022]
▶ Economics [Dyer et al., 2022]

Solution: Simulation-based inference
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Simulation-based inference (SBI)

Approximate Bayesian computation (ABC)

Repeat until m samples accepted:

Sample from prior θ⋆ ∼ p(θ)

Simulate data from model, x ∼ Pθ⋆
If d (η(y), η(x)) < ϵ, accept θ⋆

Neural posterior estimation (NPE)

Sample from prior θ1, . . . , θn ∼ p(θ)

Simulate data from model, xi ∼ Pθi , i = 1, . . . ,m. Training data: {(θi , xi )}mi=1

Assume posterior is member of a distribution family qν

Learn a map from the statistics η(x) to the posterior (i.e. ν) using e.g. normalizing flows
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Inference for simulators

Data y = {yi}ni=1 ⊆ X ⊆ Rd denoted by empirical distribution Qn

Simulator-based model PΘ = {Pθ : θ ∈ Θ}

Pθ is intractable, but sampling y ∼ Pθ is straightforward

Aim: Estimate θ given data y (maximizing likelihood, sampling from posterior)

Assumption: Model is “correct”, i.e., Qn ∈ PΘ

Problem: Model misspecification, i.e. Qn /∈ PΘ ⇒ ∄θ ∈ Θ s.t. Pθ = Qn

▶ Stochasticity in data collection process (outliers, missing data, broken independence
assumption, etc.)

▶ “All models are wrong...”

▶ Numerical approximations

Even more problem: Inference is based on simulation from misspecified model!
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Inference is based on summary statistics
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Insight 1

Under misspecification, observed statistic goes outside the set of simulated statistics

⇒ SBI methods have to generalize outside their training data
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Insight 2

Insight 1: Even if model is misspecified (Qn /∈ PΘ), it may be well-specified w.r.t the statistics

Example: Gaussian model, skewed data

“Misspecified” if statistics are sample mean and sample skewness

“Well-specified” if statistics are sample mean and sample variance

If we pick statistics appropriately, we can be robust!
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Insights

Insight 1: Under misspecification, observed statistic goes outside the set of simulated statistics

⇒ SBI methods have to generalize outside their training data
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Posterior estimate

Insight 2: Even if model is misspecified (Qn /∈ PΘ), it may be well-specified w.r.t the statistics

⇒ If we learn statistics s.t. the observed statistic is not an OOD sample, we can be robust!
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Learning robust statistics for SBI

our proposed loss = usual loss + λD(simulated statistics, observed statistic)

We want D to be outlier-robust. Hence, maximum mean discrepancy (MMD)

Regularizer λ: encodes trade-off between accuracy and robustness

When learning inference and summary network jointly (as in NPE):

L̂(ϕ, ψ) = − 1

m

m∑
i=1

log qhϕ(ηψ(x1:n,i ))(θi ) + λMMD2
k

[
{ηψ(x1:n,i )}li=1, ηψ(y1:n)

]
When learning statistics using an autoencoder (for ABC or other SBI methods):

L̂(ψ,ψd) =
1

m

m∑
i=1

(x1:n,i − η̃ψd
(ηψ(x1:n,i )))

2 + λMMD2
k

[
{ηψ(x1:n,i )}li=1, ηψ(y1:n)

]
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Results

our proposed loss = usual loss + λD(simulated statistics, observed statistic)

Ricker model: 2 parameters
Inference method: Neural posterior estimation (NPE)
ϵ-contamination model: Q = (1− ϵ)Pθtrue + ϵPθc
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Results

Ricker model: 2 parameters

Inference method: Neural posterior estimation (NPE)

ϵ-contamination model: Q = (1− ϵ)Pθtrue + ϵPθc
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Results
Application to real data

Radio propagation example

4 parameters
Data dimension: 801
Model misspecified due to broken iid assumption

starting point

noise floor

slope
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Conclusion

We propose a simple solution for tackling misspecification of simulator-based models.

Our method can be applied to any SBI method that utilizes summary statistics.

Our method only has one hyperparameter balancing efficiency and robustness.

We show robustness under misspecified scenarios with both synthetic and real-world data.

Limitation: NPEs are not amortized anymore.
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