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Inference problem

o Data x = {x}7_; C X C R? denoted by empirical distribution Q"
o Model Pg = {Pyp: 0 € ©}

e Aim: Estimate 6 given data x (maximizing likelihood, sampling from posterior)
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Inference problem

Data x = {x;}"_; C X C RY denoted by empirical distribution Q"

Model Pg = {Pg: 6 € ©}

Aim: Estimate 6 given data x (maximizing likelihood, sampling from posterior)

Assumption: Model is “correct”, i.e., Q" € Pgo

o Problem: Model misspecification, i.e. Q" ¢ Pg = $0 € © s.t. Py = Q"

» Stochasticity in data collection process (outliers, missing data, broken independence
assumption)

» “All models are wrong..."

@ Inference outcomes are unreliable under misspecification
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Inference for simulators
o Data x = {x;}7_; C X C R? denoted by empirical distribution Q"
@ Simulator-based model Pg = {Py : 6 € ©}

@ Py is intractable, but sampling y ~ Py is straightforward

e Aim: Estimate 6 given data x (maximizinglikelthood,samplingfrom-pesterior)
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Inference for simulators

o Data x = {x;}7_; C X C R? denoted by empirical distribution Q"

@ Simulator-based model Pg = {Py: § € ©}

@ Py is intractable, but sampling y ~ Py is straightforward

e Aim: Estimate 6 given data x (

@ Solution: Simulation-based inference
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Simulation-based inference (SBI)

Approximate Bayesian computation (ABC)
Repeat until m samples accepted:

e Sample from prior 8* ~ p(6)

@ Simulate data from model, y ~ Py«

o If d(n(y),n(x)) < e, accept 6*
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Simulation-based inference (SBI)

Approximate Bayesian computation (ABC)
Repeat until m samples accepted:

e Sample from prior 8* ~ p(6)

@ Simulate data from model, y ~ Py«

o If d(n(y),n(x)) < e, accept 6*

Neural posterior estimation (NPE)
@ Sample from prior 0y, ...,0, ~ p(0)

e Simulate data from model, y; ~ Py,,i = 1,...,n. Training data: {(6;,y;)}7_;
@ Assume posterior is member of a distribution family q,

@ Learn a map from the statistics 7)(y) to the posterior (i.e. ) using e.g. normalizing flows
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Inference for simulators
o Datax={x}", C X C RY denoted by empirical distribution Q"
@ Simulator-based model Pg = {Py : § € ©}

@ [Py is intractable, but sampling y ~ Py is straightforward

e Aim: Estimate 6 given data x (maximizingtikelihood,—sampling-from-pesterior)

Assumption: Model is “correct”, i.e., Q" € Pgo

Problem: Model misspecification, i.e. Q" ¢ Pg = #0 € © s.t. Py = Q"

» Stochasticity in data collection process (outliers, missing data, broken independence
assumption, etc.)

» “All models are wrong..."

» Numerical approximations

@ Even more problem: Inference is based on simulation from misspecified model!
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Inference is based on summary statistics
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Inference is based on summary statistics
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Insight 1: Even if model is misspecified (Q" ¢ Pg), it may be well-specified w.r.t the statistics
@ Example: Gaussian model, skewed data
@ Misspecified if statistics are sample mean and sample skewness

@ Well-specified if statistics are sample mean and sample variance
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Insight 1: Even if model is misspecified (Q" ¢ Pg), it may be well-specified w.r.t the statistics
@ Example: Gaussian model, skewed data
@ Misspecified if statistics are sample mean and sample skewness
@ Well-specified if statistics are sample mean and sample variance

o If we pick statistics appropriately, we can be robust!
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Inference is based on summary statistics
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Insights

Insight 1: Even if model is misspecified (Q" ¢ Pg), it may be well-specified w.r.t the statistics
@ Example: Gaussian model, skewed data
o Misspecified if statistics are sample mean and sample skewness
@ Well-specified if statistics are sample mean and sample variance

o If we pick statistics appropriately, we can be robust!

Insight 2: Under misspecification, observed statistic goes outside the set of simulated statistics

= SBI methods have to generalize outside their training data
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Learning robust statistics for SBI

proposed loss = usual loss + AD(simulated statistics, observed statistic)
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Learning robust statistics for SBI

@ For ABC or other SBI methods, usual loss is autoencoder’s reconstruction loss

@ For NPE, statistics and posterior can be learned jointly

proposed loss = usual loss + AD(simulated statistics, observed statistic)

@ We want D to be outlier-robust. Hence, maximum mean discrepancy.

Regularizer A: encodes trade-off between accuracy and robustness
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Results

o Ricker model: 2 parameters
e Inference method: Neural posterior estimation (NPE)
e c-contamination model: Q = (1 —¢€)Py, . + €Py,
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Results
Application to real data

Radio propagation example
@ 4 parameters
o Data dimension: 801
@ Model misspecified due to broken iid assumption
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Conclusion

@ We propose a simple solution for tackling misspecification of simulator-based models.
@ Our method can be applied to any SBI method that utilizes summary statistics.
@ Our method only has one hyperparameter balancing efficiency and robustness.

@ We show robustness under misspecified scenarios with both synthetic and real-world data.
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