Learning Robust Statistics for Simulation-based Inference under Model Misspecification

Daolang Huang*1, Ayush Bharti*1, Amauri Souza1, Luigi Acerbi2, Samuel Kaski1,3

Department of Computer Science, Aalto University¹
Department of Computer Science, University of Helsinki²
Department of Computer Science, University of Manchester³

January 19, 2024

Inference problem

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Model $\mathcal{P}_{\Theta} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$
- Aim: Estimate θ given data \mathbf{x} (maximizing likelihood, sampling from posterior)

Inference problem

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Model $\mathcal{P}_{\Theta} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$
- Aim: Estimate θ given data \mathbf{x} (maximizing likelihood, sampling from posterior)
- Assumption: Model is "correct", i.e., $\mathbb{Q}^n \in \mathcal{P}_{\Theta}$
- **Problem:** Model misspecification, i.e. $\mathbb{Q}^n \notin \mathcal{P}_{\Theta} \Rightarrow \nexists \theta \in \Theta$ s.t. $\mathbb{P}_{\theta} = \mathbb{Q}^n$

Inference problem

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Model $\mathcal{P}_{\Theta} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$
- Aim: Estimate θ given data \mathbf{x} (maximizing likelihood, sampling from posterior)
- Assumption: Model is "correct", i.e., $\mathbb{Q}^n \in \mathcal{P}_{\Theta}$
- **Problem:** Model misspecification, i.e. $\mathbb{Q}^n \notin \mathcal{P}_{\Theta} \Rightarrow \nexists \theta \in \Theta$ s.t. $\mathbb{P}_{\theta} = \mathbb{Q}^n$
 - Stochasticity in data collection process (outliers, missing data, broken independence assumption)
 - "All models are wrong..."
- Inference outcomes are unreliable under misspecification

Inference for simulators

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator-based model $\mathcal{P}_{\Theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$
- ullet $\mathbb{P}_{ heta}$ is intractable, but sampling $y \sim \mathbb{P}_{ heta}$ is straightforward
- Aim: Estimate θ given data \mathbf{x} (maximizing likelihood, sampling from posterior)

Inference for simulators

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator-based model $\mathcal{P}_{\Theta} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$
- ullet $\mathbb{P}_{ heta}$ is intractable, but sampling $y \sim \mathbb{P}_{ heta}$ is straightforward
- Aim: Estimate θ given data x (maximizing likelihood, sampling from posterior)
- Solution: Simulation-based inference

Simulation-based inference (SBI)

Approximate Bayesian computation (ABC)

Repeat until *m* samples accepted:

- Sample from prior $\theta^{\star} \sim p(\theta)$
- ullet Simulate data from model, $\mathbf{y} \sim \mathbb{P}_{ heta^\star}$
- If $d(\eta(\mathbf{y}), \eta(\mathbf{x})) < \epsilon$, accept θ^*

Simulation-based inference (SBI)

Approximate Bayesian computation (ABC)

Repeat until *m* samples accepted:

- Sample from prior $\theta^{\star} \sim p(\theta)$
- ullet Simulate data from model, $\mathbf{y} \sim \mathbb{P}_{ heta^\star}$
- If $d(\eta(\mathbf{y}), \eta(\mathbf{x})) < \epsilon$, accept θ^*

Neural posterior estimation (NPE)

- Sample from prior $\theta_1, \ldots, \theta_n \sim p(\theta)$
- Simulate data from model, $\mathbf{y}_i \sim \mathbb{P}_{\theta_i}, i=1,\ldots,n$. Training data: $\{(\theta_i,\mathbf{y}_i)\}_{i=1}^n$
- ullet Assume posterior is member of a distribution family $q_
 u$
- ullet Learn a map from the statistics $\eta(\mathbf{y})$ to the posterior (i.e. u) using e.g. normalizing flows

Inference for simulators

- Data $\mathbf{x} = \{x_i\}_{i=1}^n \subseteq \mathcal{X} \subseteq \mathbb{R}^d$ denoted by empirical distribution \mathbb{Q}^n
- Simulator-based model $\mathcal{P}_{\Theta} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$
- ullet $\mathbb{P}_{ heta}$ is intractable, but sampling $y \sim \mathbb{P}_{ heta}$ is straightforward
- Aim: Estimate θ given data **x** (maximizing likelihood, sampling from posterior)
- **Assumption:** Model is "correct", i.e., $\mathbb{Q}^n \in \mathcal{P}_{\Theta}$
- **Problem:** Model misspecification, i.e. $\mathbb{Q}^n \notin \mathcal{P}_{\Theta} \Rightarrow \nexists \theta \in \Theta$ s.t. $\mathbb{P}_{\theta} = \mathbb{Q}^n$
 - Stochasticity in data collection process (outliers, missing data, broken independence assumption, etc.)
 - "All models are wrong..."
 - Numerical approximations
- Even more problem: Inference is based on simulation from misspecified model!

Insight 1: Even if model is misspecified $(\mathbb{Q}^n \notin \mathcal{P}_{\Theta})$, it may be well-specified w.r.t the statistics

- Example: Gaussian model, skewed data
- Misspecified if statistics are sample mean and sample skewness
- Well-specified if statistics are sample mean and sample variance

Insight 1: Even if model is misspecified $(\mathbb{Q}^n \notin \mathcal{P}_{\Theta})$, it may be well-specified w.r.t the statistics

- Example: Gaussian model, skewed data
- Misspecified if statistics are sample mean and sample skewness
- Well-specified if statistics are sample mean and sample variance
- If we pick statistics appropriately, we can be robust!

Insights

Insight 1: Even if model is misspecified $(\mathbb{Q}^n \notin \mathcal{P}_{\Theta})$, it may be well-specified w.r.t the statistics

- Example: Gaussian model, skewed data
- Misspecified if statistics are sample mean and sample skewness
- Well-specified if statistics are sample mean and sample variance
- If we pick statistics appropriately, we can be robust!

Insight 2: Under misspecification, observed statistic goes outside the set of simulated statistics

⇒ SBI methods have to generalize outside their training data

Learning robust statistics for SBI

proposed loss = usual loss + λD (simulated statistics, observed statistic)

Learning robust statistics for SBI

proposed loss = usual loss + λD (simulated statistics, observed statistic)

- For ABC or other SBI methods, usual loss is autoencoder's reconstruction loss
- For NPE, statistics and posterior can be learned jointly
- ullet We want ${\mathcal D}$ to be outlier-robust. Hence, maximum mean discrepancy.
- ullet Regularizer λ : encodes trade-off between accuracy and robustness

Results

- Ricker model: 2 parameters
- Inference method: Neural posterior estimation (NPE)
- ϵ -contamination model: $\mathbb{Q} = (1-\epsilon)\mathbb{P}_{\theta_{\mathrm{true}}} + \epsilon\mathbb{P}_{\theta_{\mathcal{C}}}$

Results

Application to real data

Radio propagation example

- 4 parameters
- Data dimension: 801
- Model misspecified due to broken iid assumption

Conclusion

- We propose a simple solution for tackling misspecification of simulator-based models.
- Our method can be applied to any SBI method that utilizes summary statistics.
- Our method only has one hyperparameter balancing efficiency and robustness.
- We show robustness under misspecified scenarios with both synthetic and real-world data.