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Radio Channel
The radio signal propagates from the transmitter to the receiver through the envi-
ronment, termed the radio channel.
The communication systems engineers account for the radio channel using channel
models.
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Radio Channel
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y(t)

Quantity of interest: Impulse response h(t) or transfer function H(f )
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Stochastic Radio Channel Models
Consider the stochastic multipath model (assume time-invariance):

y(t) = (h ∗ x)(t) + w(t) =
∑

l

βlx(t − τl) + w(t)

h(t) → channel impulse response

{(τl , βl)} → delay and complex gain of l th multipath component

w(t) → additive white complex Gaussian noise

Simulating transfer function from a stochastic multipath model:

Model
Parameters

θ

Stochastic
Multipath model

Multipath
components
{(τl , βl)}

Impulse response
or

transfer function

Model parameters θ can be adjusted to mimic different environments.

Hence, their parameters need to be calibrated for the model to be useful.
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Example: Model by Saleh-Valenzuela (S-V)
[Saleh and Valenzuela, 1987]

Multipaths arrive in clusters!

Impulse response:

h(t) =
∑

l

∑

p

βplδ (t − (Tl + τpl))

Tl ∈ R+ : cluster delay

τpl ∈ R+ : within cluster delay

βpl ∈ C : complex gain

Stochastic Model:

Tl ∼ PoissonPP(R+,Λ) τpl ∼ PoissonPP(R+, λ)

βpl |Tl , τpl
iid∼ CN (0,Q exp(−Tl/Γ) exp(−τpl/γ))

Parameters to be calibrated: θ = [Q,Λ, λ, Γ, γ, σ2W ]⊤
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Example: Model by Saleh-Valenzuela (S-V)
Parameters: θ = [Q,Λ, λ, Γ, γ, σ2W ]⊤
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Calibration from measurements
Calibration problem: Given the data yobs, estimate parameters θ such that the
model MΘ = {Pθ : θ ∈ Θ ⊂ Rq} fits to the data.

Classical estimation techniques such as

Maximum Likelihood (ML) estimate: θ̂ML = argmax
θ

f (yobs|θ)

Bayesian inference: p(θ|yobs) ∝ f (yobs|θ)p(θ)
require access to the likelihood function f (yobs|θ).

Fitting a Gaussian model to data

Data
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Calibrating channel models is challenging

Problem: For most stochastic channel models, the likelihood function
f (yobs|θ) is intractable and cannot be evaluated numerically.

Causes of intractable likelihood:

The model is simply too complex.

Variables that are important for model description are unobserved.

The likelihood function has not been derived yet for a newly
constructed model.

Therefore, standard estimation techniques are unrealizable.
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State-of-the-art Calibration Method
Multi-step approaches are common:
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Drawbacks:

Requires sophisticated algorithms (multipath extraction, clustering) —
cumbersome to use due to a number of heuristic choices

Overall performance of these algorithms are hard to investigate

Calibration methods are specific to the models
▶ redesign for new models
▶ hard to compare models due to lack of a common calibration method
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Calibration of Radio Channel Models is a LFI problem

Main observation: Calibration of stochastic channel models is a likelihood-
free inference (LFI) problem:

The likelihood function is intractable and cannot be evaluated
numerically.

Easy to simulate data from them.

⇒ Stochastic radio channel models are generative (implicit, simulator-based)
models.

Therefore, likelihood-free inference methods such as Approximate Bayesian
Computation (ABC) [Sisson, 2018] can potentially be used to calibrate
them.
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Approximate Bayesian Computation (ABC)

ABC is a likelihood-free inference method that permits sampling from the
(approximate) posterior of a generative model.

Rejection ABC algorithm

Sample θ∗ ∼ p(θ)

Simulate data from model, y ∼ f ( · |θ∗)

If ρ (S(y),S(yobs)) < ϵ, accept θ∗

ρ( · , · ) is a distance metric

S( · ) is the summarizing function

ϵ is a tolerance threshold

Accepted samples θ1, . . . , θN are iid from the approximate posterior:

p(θ|ρ(S(yobs),S(y) < ϵ) ≈ p(θ|yobs)
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Approximate Bayesian Computation (ABC) — contd.

The “approximation” in Bayesian inference arises due to

use of tolerance threshold in accepting parameter samples

summarizing the data into a few statistics. If S( · ) is a sufficient
statistic of y, then

p(θ|ρ(S(y), S(y∗)) < ϵ) = p(θ|ρ(y, y∗) < ϵ)

Ingredients required for implementing an ABC algorithm:

distance metric ρ( · , · )
summary statistics S( · )
tolerance threshold ϵ

ρ(S(y),S(y∗)) < ϵ
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Approximate Bayesian Computation (ABC) — contd.
Choosing ϵ

In practice, select ϵ as a small percentile of the simulated distances,
i.e. given {(θ∗

i ,S(y
∗
i )}Mi=1, accept the ϵM samples of θ∗

i with the
least ρ(S(y), S(y∗i ))

Choosing S( · )
The choice of statistics is non-trivial as it involves trade-off between

1 information loss due to summarization
2 curse of dimensionality

Domain knowledge is vital!

Choose ρ( · , · )
Euclidean distance for summary-based ABC
Integral probability metrics such as maximum mean discrepancy
(MMD), Wasserstein distance

We take ρ to be the MMD.
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Maximum Mean Discrepancy (MMD)
We take ρ to be the MMD, which is a notion of distance on probability
distributions or data-sets.

Given a kernel k, a distribution P can be mapped to a function space Hk as

µP( · ) = EX∼P[k(X , · )] =
∫

Rd

k(x, · )P(dx),

where µP is called the kernel mean embedding of P [Muandet et al., 2017].

The MMD between P and Q is defined as

MMDk [P,Q] = ∥µP − µQ∥Hk

x

D
e
n
si
ty

Function Space (RKHS) 

p

q

m

m

P

Q

Remark: The MMD compares infinitely many moments of P and Q.
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Computing MMD from Data-set

The reproducing property of k yields

MMD2
k [P,Q] = EX ,Y∼P[k(X ,Y )]

− 2EX∼P,Y∼Q[k(X ,Y )] + EX ,Y∼Q[k(X ,Y )]

Unbiased empirical estimate of MMD2
k [P,Q] from data-sets X and Y:

M̂MD
2

k [X,Y] =

∑
i ̸=i ′ k(xi , xi ′)

NX (NX − 1)

−
2
∑NY

j=1

∑NX
i=1 k(xi , yj)

NYNX
+

∑
j ̸=j ′ k(yj , yj ′)

NY (NY − 1)

where X = {x1, . . . , xNX
} iid∼ P and Y = {y1, . . . , yNY

} iid∼ Q
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Kernel for radio channel measurements

The space of radio channel measurements is high-dimensional, we define the
kernel kY to avoid the curse of dimensionality.

Hence, we map y to its first I temporal moments m = [m(0), . . . ,m(I−1)]⊤,

mi =

∫
t i |y(t)|2dt, i = 0, 1, 2, . . . , I − 1,

and construct the kernel kY as

kY
(
y, y′

)
:= kSE

(
logm, logm′) , where kSE(x, x

′) = exp

(
−∥x− x′∥22

l2

)

The lengthscale l is set using the median heuristic.

Choice of kernel based on domain knowledge!
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Qualifying the kernel

MMD should be minimum around the true value (green line).
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Kernel-based ABC Calibration of Stochastic Channel
Models
Overview

Prior, p(θ) Model
Rejection
based on
MMD

Data

Compute
means and
covariances

Regression
Adjustment

Generate
New

Population

Θ(1) Θ̃(t)

Θ(t+1)

We use the maximum mean discrepancy (MMD) [Gretton et al., 2012] as
the distance metric and combine

Population Monte Carlo ABC [Beaumont et al., 2009]

Local-linear regression adjustment [Beaumont et al., 2002]
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Rejection-ABC based on MMD

Prior, p(θ) Model
Rejection
based on
MMD

Data

Compute
means and
covariances

Regression
Adjustment

Generate
New

Population

Θ(1) Θ̃(t)

Θ(t+1)

Algorithm

Sample θ1, . . . ,θM ∼ p(θ)

Simulate data from model, yi ∼ f ( · |θi ), i = 1, . . . ,M

Compute M̂MD
2

kY [yi , yobs], i = 1, . . . ,M

Accept Mϵ = ϵM samples {θ∗
i , y

∗
i }Mϵ

i=1 corresponding to the smallest
distances
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Regression adjustment ABC

Prior, p(θ) Model
Rejection
based on
MMD

Data

Compute
means and
covariances

Regression
Adjustment

Generate
New

Population

Θ(1) Θ̃(t)

Θ(t+1)

We refine the posterior using regression adjustment.
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Regression adjustment ABC
We apply local-linear regression adjustment to the accepted samples to

weaken the discrepancy between simulated and observed statistics

to weight the samples according to their MMD distance

sobs

regression 
model

original

adjusted

s maxsmins

q

q

qmin

max

Taking s to be the means and covariances of temporal moments, samples are
adjusted as

θ̃i = θ∗
i − (si − sobs)

⊤
β̂, i = 1, . . . ,Mϵ,

where β̂ is the solution to a weighted least-squares problem.
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Population Monte Carlo ABC

Prior, p(θ) Model
Rejection
based on
MMD

Data

Compute
means and
covariances

Regression
Adjustment

Generate
New

Population

Θ(1) Θ̃(t)
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Population Monte Carlo ABC

Population Monte Carlo (PMC) ABC is a sequential Monte Carlo method
that iteratively improves the posterior.

PMC-ABC with Regression Adjustment

for iteration t = 1, . . . ,T

1 Sample (θ∗
1, . . . ,θ

∗
M) from previous populationa Θ̃(t) with some

probability

2 Generate new population Θ(t+1) = (θ
(t+1)
1 , . . . ,θ

(t+1)
M ) using a

proposal density

3 Apply rejection step using MMD on Θ(t+1) and regression adjustment
to get Θ̃(t+1)

end

aFor t = 1, parameters are sampled from the prior.
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Example 1: Saleh-Valenzuela (S-V) model
Recap

Impulse response:

h(t) =
∑

l

∑

p

βplδ (t − (Tl + τpl))

Stochastic Model:

Tl ∼ PoissonPP(R+,Λ)

τpl ∼ PoissonPP(R+, λ)

βpl |Tl , τpl
iid∼ CN (0,Q exp(−Tl/Γ) exp(−τpl/γ))

Parameters to be calibrated: θ = [Q,Λ, λ, Γ, γ, σ2W ]⊤
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Simulation experiment (S-V model)

Settings: Flat priors, I = 4, M =
2000, Mϵ = 100, Nsim = 100,
Nobs = 1000

Observations:

Approximate posteriors
concentrate around the true
value.

The algorithm converges rather
quickly and the posteriors
taper as the iterations proceed.

Even the first iteration gives a
reasonable estimate.
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Application to Measured Data

We apply the kernel-based ABC method on real measurements1.

Environment: small conference room of dimension 3m × 4m × 3m

Frequency range: 58 GHz to 62 GHz, 801 frequency samples

5× 5 virtual planar array at both sides, leading to 625 channel
realizations

Problem: model is misspecified!
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1From [Gustafson et al., 2016]
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Application to Measured Data (S-V model)

Observations:

The marginal approximate
posteriors for λ, Γ, and σ2W are
highly concentrated.

Posteriors for Γ and σ2W appear
to converge from the second
iteration itself, indicating that
these parameters affect the
MMD the most.

Posteriors for Q, Λ and γ take
around eight or nine iterations
to converge to a different
location in the prior range than
where they began from, unlike
the simulation experiment.
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Example 2: Propagation Graph (PG) model

We consider a simple directed graph G = (V, E).
Vertex set V: The transmitters, receivers, and scatterers are represented

by vertices in the set: V = Vt ∪ Vr ∪ Vs.

Edge set E: Wave propagation between the vertices is modeled by edges
in E . If wave propagation from v ∈ V to v ′ ∈ V is possible,
then (v , v ′) ∈ E .

Modeling Propagation Using Graphs (1)
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We consider a simple directed graph G = (V , E).

Vertex set V: The transmitters, receivers, and scatterers are represented by vertices
in the set: V = Vt ∪ Vr ∪ Vs.

Edge set E : Wave propagation between the vertices is modeled by edges in E . Iff
wave propagation from v ∈ V to v′ ∈ V is possible, then (v, v′) ∈ E .

Propagation graph with
four transmitters (Tx),
three receivers (Rx),
and six scatterers (S).

Tx4
Tx3
Tx2
Tx1

Vt

Rx1
Rx2

Rx3

Vr

S1
S2

S3

S4

S5

S6
Vs

Rules for propagation:

The sum of signals impinging via
the incoming edges of a scatterer
are re-emitted via the outgoing
edges.

An edge e = (v , v ′) ∈ E transfers
the signal from v to v ′ according to
an edge transfer function Ae(f ).

32 / 42



Transfer Matrix
PG model

Edge transfer functions can be grouped into matrices according to the vector
signal flow graph:

Transfer Matrix of a Propagation Graph

Vienna, March 2014 8 / 35

The relation between the input vector X(f) and the output vector Y(f) in the Fourier
domain reads

Y(f) = H(f)X(f)

where the transfer matrix H(f) is of the form [Pedersen2007&2012]:

H(f) = D(f) + R(f)(I + B(f) + B(f)2 + B(f)3 + . . . )T(f)

= D(f) + R(f)(I − B(f))−1T(f), ρ(B(f)) < 1.

X(f) Y(f)
∑∑∑ ∑∑∑

∑∑∑

Vt Vr

Vs

D(f)

T
(f) R

(f
)

B(f)

The transfer matrix is obtained as:

H(f ) = D(f ) + R(f )(I+ B(f ) + B(f )2 + B(f )3 + . . . )T(f )

= D(f ) + R(f )(I− B(f ))−1T(f ), ρ(B(f )) < 1.
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Stochastic Propagation Graph
Edge transfer function for edge e = (v , v ′) ∈ E

Ae(f ) = ge(f ) exp[j(ψe − 2πτe f )]

where

ψe ∼ U(0, 2π) is the phase

τe = ∥(rw − rv )∥/c is the
propagation delay between
vertex w and v with position
vectors rw and rv , respectively,
randomly generated

g < 1 is a gain constant,

c is the speed of light in
vacuum.

The edge gain, ge(f ) is calculated as:

ge(f ) =





1
(4πf τe)

; e ∈ Ed
1√

4πτ2e f µ(Et)S(Et)
; e ∈ Et

g
odi(e) ; e ∈ Es

1√
4πτ2e f µ(Er)S(Er)

; e ∈ Er

Parameters to calibrate:
θ = [g ,Ns ,Pvis, σ

2
W ]⊤

µ(Ea) =
1

|Ea|
∑

e⊂Ea

τe , S(Ea) =
∑

e⊂Ea

τ−2
e , Ea ⊂ E ,
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Example 2: Propagation Graph (PG) model
We also apply the proposed algorithm on the Propagation Graph (PG) model
which is of a different mathematical structure than the SV model:

Simulated Data:
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Measured data:
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Observations (PG model)

The algorithm converges quickly.

Approximate posteriors are highly concentrated around the true
values.

The approximate posterior for g starts off very wide and then gets
narrower as the iterations proceed.

The proposed method is able to accurately calibrate the PG model.

Results on measured data is similar to what is observed in the
simulation experiment.

Convergence is achieved after around four or five iterations.
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Model Fit Comparison

Comparing the two model fits in terms of the averaged power delay profile
(APDP), rms delay spread, mean delay, and received power:
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Both S-V and PG models are able to fit the APDP well.

S-V model is not able to replicate the initial peaks in the data, while
the PG model represents them well.

The PG model captures the behavior of the empirical cdfs well, while
S-V model fails to do so.
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Take-home message
State-of-the-art calibration method:
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Proposed method using easy-to-compute general summaries:
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Take-home message

Advantages:

General calibration method applicable to different channel models

Simpler processing chain

Fit is based on explicit choice of summaries

Information on posterior is obtained (not only point estimates)
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