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Outline

@ Stochastic Radio Channel Models and their Calibration
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Radio Channel

The radio signal propagates from the transmitter to the receiver through the envi-
ronment, termed the radio channel.

The communication systems engineers account for the radio channel using channel
models.

R y(t)
/ Y Receiver

0 /
Y Transmitter

4/42



Radio Channel

The radio signal propagates from the transmitter to the receiver through the envi-
ronment, termed the radio channel.

The communication systems engineers account for the radio channel using channel
models.

Path 1

y(t)
Y Receiver

X(t)

Transmltter

Input Radio Channel Output
x(t) h(t) (1)

Quantity of interest: Impulse response h(t) or transfer function H(f)
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Stochastic Radio Channel Models

Consider the stochastic multipath model (assume time-invariance):
y(t) = (h*x)(t) + w(t) = Y Bix(t — ) + w(t)
/

@ h(t) — channel impulse response
o {(71,5;)} — delay and complex gain of /*" multipath component

e w(t) — additive white complex Gaussian noise
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Stochastic Radio Channel Models

Consider the stochastic multipath model (assume time-invariance):
y(t) = (h*x)(t) + w(t) = Y Bix(t — ) + w(t)
/

@ h(t) — channel impulse response

/th

e {(71,01)} — delay and complex gain of /*" multipath component

e w(t) — additive white complex Gaussian noise
Simulating transfer function from a stochastic multipath model:
Model

Parameters
)

Multipath Impulse response
components or

Multipath model
HLERAEIMOCS {(m,81)} transfer function

Stochastic

Model parameters 6 can be adjusted to mimic different environments.

Hence, their parameters need to be calibrated for the model to be useful.
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Example: Model by Saleh-Valenzuela (S-V)
[Saleh and Valenzuela, 1987]
Multipaths arrive in clusters!

Impulse response:

h(t) =D " B (t— (Ti + 7))
I p

e T, € R* : cluster delay
@ 7y € RT : within cluster delay

@ By € C: complex gain
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Example: Model by Saleh-Valenzuela (S-V)
[Saleh and Valenzuela, 1987]
Multipaths arrive in clusters!

Impulse response:

h(t) =D " B (t— (Ti + 7))
I p

e T, € R* : cluster delay
@ 7y € RT : within cluster delay

@ By € C: complex gain
Stochastic Model:

e T, ~ PoissonPP(R™,A) @ 7, ~ PoissonPP(R™, \)
iid
® Bpi| Ti, mp1 ~ CN (0, Qexp(—T;/T) exp(—7p1/7))

Parameters to be calibrated: 8 = [Q, A, A, I',fy,cr‘z/v]T
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Example: Model by Saleh-Valenzuela (S-V)

Parameters: 0 = [Q, A, \, r,%a\%\/]T
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Calibration from measurements

Calibration problem: Given the data y,ps, estimate parameters 6 such that the
model Mg = {Pg : 6 € © C R9} fits to the data.

Classical estimation techniques such as

Maximum Likelihood (ML) estimate: Oy = argmax f(yops|0)
)

Bayesian inference:  p(0|yobs) ¢ f(Yobs|0)p(0)

require access to the likelihood function f(yobs|€)-

Fitting a Gaussian model to data

L fit
< _ - - Sub-optimal fits
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Calibrating channel models is challenging

Problem: For most stochastic channel models, the likelihood function
f(Yobs|@) is intractable and cannot be evaluated numerically.

Causes of intractable likelihood:
@ The model is simply too complex.
@ Variables that are important for model description are unobserved.

@ The likelihood function has not been derived yet for a newly
constructed model.

Therefore, standard estimation techniques are unrealizable.
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State-of-the-art Calibration Method

Multi-step approaches are common

Multipath
Parameters

M t Multipath
easuremen D ta-’ p
Campaign extraction

z
>

Parameter Point
estimation Est|mate
MUSIC, szzvr\::r Maximum
SAGE,
ESPRIT.. Manual...

likelihood,

Least-squares
H fitting...
UU_A_, |

—
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State-of-the-art Calibration Method

Multi-step approaches are common:

Measurement Multipath Multipath Parameter Point
. Data-» .
Campaign extraction Parameters estimation Estlmate

MUSIC, KmZC;V::r Maximum
= SAGE, & Vanoal s likelihood,
= ESPRIT... Least-squares

H fitting...

.

@ Requires sophisticated algorithms (multipath extraction, clustering) —
cumbersome to use due to a number of heuristic choices
@ Overall performance of these algorithms are hard to investigate
o Calibration methods are specific to the models
> redesign for new models
» hard to compare models due to lack of a common calibration method

)

Drawbacks:
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Calibration of Radio Channel Models is a LFI problem

Main observation: Calibration of stochastic channel models is a likelihood-
free inference (LFI) problem:

@ The likelihood function is intractable and cannot be evaluated
numerically.

@ Easy to simulate data from them.

= Stochastic radio channel models are generative (implicit, simulator-based)
models.

Therefore, likelihood-free inference methods such as Approximate Bayesian
Computation (ABC) [Sisson, 2018] can potentially be used to calibrate
them.
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Outline

© Approximate Bayesian Computation
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Approximate Bayesian Computation (ABC)

ABC is a likelihood-free inference method that permits sampling from the
(approximate) posterior of a generative model.
Rejection ABC algorithm

e Sample 6* ~ p(0)

e Simulate data from model, y ~ f(-|6%)

o If p(5(y), S(Yons)) < €, accept 0*
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Approximate Bayesian Computation (ABC)

ABC is a likelihood-free inference method that permits sampling from the
(approximate) posterior of a generative model.
Rejection ABC algorithm
e Sample 6* ~ p(0)
e Simulate data from model, y ~ f(-|6%)
If p(S(y), S(Yons)) < €, accept 0"

p(-, ) is a distance metric
S(-) is the summarizing function

€ is a tolerance threshold

Accepted samples 61,...,0y are iid from the approximate posterior:

p(Op(S(Yobs), S(y) < €) = p(0]yobs)
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Approximate Bayesian Computation (ABC) — contd.

The “"approximation” in Bayesian inference arises due to
@ use of tolerance threshold in accepting parameter samples

@ summarizing the data into a few statistics. If S(-) is a sufficient
statistic of y, then

p(01p(S(y), S(y)) <€) = p(O]p(y,y*) <€)
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Approximate Bayesian Computation (ABC) — contd.

The “"approximation” in Bayesian inference arises due to
@ use of tolerance threshold in accepting parameter samples

e summarizing the data into a few statistics. If S(-) is a sufficient
statistic of y, then

p(01p(S(y), S(y)) <€) = p(O]p(y,y*) <€)

Ingredients required for implementing an ABC algorithm:
@ distance metric p(-, )
@ summary statistics S(-)

@ tolerance threshold ¢
p(S(y), S(y")) <e
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Approximate Bayesian Computation (ABC) — contd.
Choosing ¢
@ In practice, select € as a small percentile of the simulated distances,
i.e. given {(07,S(y?)}M,, accept the eM samples of 87 with the
least p(5(y), S(y7))
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Approximate Bayesian Computation (ABC) — contd.
Choosing ¢
@ In practice, select € as a small percentile of the simulated distances,
i.e. given {(07,S(y?)}M,, accept the eM samples of 87 with the
least p(5(y), S(y7))

Choosing S(-)
@ The choice of statistics is non-trivial as it involves trade-off between
@ information loss due to summarization
@ curse of dimensionality

@ Domain knowledge is vital!
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Approximate Bayesian Computation (ABC) — contd.
Choosing ¢
@ In practice, select € as a small percentile of the simulated distances,
i.e. given {(07,S(y?)}M,, accept the eM samples of 87 with the
least p(5(y), S(y7))

Choosing S(-)
@ The choice of statistics is non-trivial as it involves trade-off between
@ information loss due to summarization
@ curse of dimensionality

@ Domain knowledge is vital!

Choose p( -, -)
@ Euclidean distance for summary-based ABC
@ Integral probability metrics such as maximum mean discrepancy
(MMD), Wasserstein distance

We take p to be the MMD.

15/ 42
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© Kernel-based ABC method
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Maximum Mean Discrepancy (MMD)

We take p to be the MMD, which is a notion of distance on probability
distributions or data-sets.

Given a kernel k, a distribution IP can be mapped to a function space Hy as

1p(+) = Explk(X, -)] = / (x, - )P(dx).

k
Rd
where pp is called the kernel mean embedding of P [Muandet et al., 2017].
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Maximum Mean Discrepancy (MMD)

We take p to be the MMD, which is a notion of distance on probability
distributions or data-sets.

Given a kernel k, a distribution IP can be mapped to a function space Hy as
pe(-) = B kX, )] = [ k(. JP(x),

where pp is called the kernel mean embedding of P [Muandet et al., 2017].
The MMD between P and Q is defined as

MMD[P, Q] = [|lup — pqlly,

Function Space (RKHS) H .

Remark: The MMD compares infinitely many moments of P and Q.
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Computing MMD from Data-set

The reproducing property of k yields

MMDZ[P, Q] = Ex,y~p[k(X, Y)]
— 2Exp,y~g[k(X, V)] + Ex y~glk(X, Y)]
Unbiased empirical estimate of MMD?[P, Q] from data-sets X and Y:
=2 D iz k(xi,xir)
MMD, [X, Y] = =iz 707
k[ ] NX(NX _ 1)

N
22 122020 k(xi,yj) n >z K(¥j,¥j)
Ny Nx Ny(Ny —1)

whereX:{xl,...,xNX}%}P’andY:{yl,...,yNY}'ﬂ
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Kernel for radio channel measurements

The space of radio channel measurements is high-dimensional, we define the
kernel ky to avoid the curse of dimensionality.

Hence, we map y to its first / temporal moments m = [m(o), ey m(’_l)]T,

mi:/ti‘y(t)|2dta i=01,2,...,/ -1,

and construct the kernel ky as

Y12
ky (y,y’) = ksg (Iog m, log m’) ,  where ksg(x,x') = exp (—‘XIZXH2>

The lengthscale / is set using the median heuristic.

Choice of kernel based on domain knowledge!
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Qualifying the kernel

MMD should be minimum around the true value (green line).
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Kernel-based ABC Calibration of Stochastic Channel
Models

Overview

Data

. oW Rejection Compute R . L0
Prior, p(6) Model based on means and egression
‘ Adjustment
MMD covariances

Generate
New
Population

ot+1)

We use the maximum mean discrepancy (MMD) [Gretton et al., 2012] as
the distance metric and combine

e Population Monte Carlo ABC [Beaumont et al., 2009]

@ Local-linear regression adjustment [Beaumont et al., 2002]
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Rejection-ABC based on MMD

Data
. oW Rejection Compute R . L0
Prior, p(6) Model based on means and egression
‘ Adjustment
MMD covariances
Generate
New
C Population

Algorithm
e Sample 61,...,0p ~ p(0)
e Simulate data from model, y; ~ f(-]6;),i =1,...,

2
Compute MMD,, [yi,Yobs), I =1,...

Accept M, = eM samples {67 ,y,}
distances

i

—, corresponding to the smallest

, M

M
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Regression adjustment ABC

) Rejection
Prior, p(8) Model based on
MMD

Regression o

Generate

Data
Compute
means and
covariances
e(z+1)

We refine the posterior using regression adjustment.

Population

Adjustment

New
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Regression adjustment ABC

We apply local-linear regression adjustment to the accepted samples to
@ weaken the discrepancy between simulated and observed statistics

@ to weight the samples according to their MMD distance

0

regression

gt R

Omax
adjusted

Iemw”

origina

R N

Smin Sobs Smax S

Taking s to be the means and covariances of temporal moments, samples are
adjusted as

~ T oA .

0;:0;-"—(5,-—501,5) 67 ’:17"'7M6a

where ,@ is the solution to a weighted least-squares problem.
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Population Monte Carlo ABC

Prior, p(8)

on

Model

Data

Rejection Compute

Regression

based on means and
MMD covariances

ot+1)

Adjustment

Generate

New

Population
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Population Monte Carlo ABC

Population Monte Carlo (PMC) ABC is a sequential Monte Carlo method
that iteratively improves the posterior.

PMC-ABC with Regression Adjustment

for iteration t=1,..., T
@ Sample (67,...,0},) from previous population? () with some
probability
@ Generate new population ©(+1) = (Ogt“), . ,05\;“)) using a

proposal density

© Apply rejection step using MMD on ©(t+1) and regression adjustment
to get ©(t+1)

end

“For t = 1, parameters are sampled from the prior.
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Outline

@ Results
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Example 1: Saleh-Valenzuela (S-V) model

Recap

Impulse response:

h(t) = Z Zﬁpld(t —(T1 +701))
p

/

Stochastic Model:
o T; ~ PoissonPP(R™,A)
@ 7 ~ PoissonPP(R™, \)

® Bpi| Ti, Tpi " CN (0, Qexp(—T;/T) exp(—7p1/7))

Parameters to be calibrated: 0 = [Q, A, ), F,fy,aﬁv]T
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Simulation experiment (S-V model)

Settings: Flat priors, | = 4, M =

2000, M, = 100, N, = 100,
N,,s = 1000
Observations:

@ Approximate posteriors
concentrate around the true
value.

@ The algorithm converges rather
quickly and the posteriors
taper as the iterations proceed.

@ Even the first iteration gives a
reasonable estimate.
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Application to Measured Data

We apply the kernel-based ABC method on real measurements®.
@ Environment: small conference room of dimension 3m x 4m x 3m
@ Frequency range: 58 GHz to 62 GHz, 801 frequency samples

@ 5 x 5 virtual planar array at both sides, leading to 625 channel
realizations

'From [Gustafson et al., 2016]
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Application to Measured Data

We apply the kernel-based ABC method on real measurements®.
@ Environment: small conference room of dimension 3m x 4m x 3m
@ Frequency range: 58 GHz to 62 GHz, 801 frequency samples

@ 5 x 5 virtual planar array at both sides, leading to 625 channel
realizations

Problem: model is misspecified!

@ oObserved summary

@ Simulated summaries

mean(zs)

-a2 a0 -3 36 34 00 05

1.0 15
mean(zo) var(zo)

'From [Gustafson et al., 2016]
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Application to Measured Data

We apply the kernel-based ABC method on real measurements®.

@ Environment: small conference room of dimension 3m x 4m x 3m

@ Frequency range: 58 GHz to 62 GHz, 801 frequency samples

@ 5 x 5 virtual planar array at both sides, leading to 625 channel
realizations

Problem: model is misspecified!

mean(zs)

@ oObserved summary

@ Simulated summaries

var(zy)

050

. adjusted,

0

.. ~0
original

-42 -40 -38
mean(zo)

36

05

1
var(zo)

'From [Gustafson et al., 2016]

0

0

regression
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Application to Measured Data (S-V model)

Observations:

@ The marginal approximate O 5o ? %Wmo <soear M@O
posteriors for A, [, and 02, are ...
highly concentrated.

“iterations F erations
@ Posteriors for I' and ‘72\/\/ appear ° =
to converge from the second
iteration itself, indicating that < o
these parameters affect the é <L
MMD the most. | WO by | (K000 0000000e
Y terations " erations

2.0e-09

@ Posteriors for Q, A and y take ?
around eight or nine iterations

15e-09

to converge to a different = € e
location in the prior range than ™" A
where they began from, unlike dioosol¥oog

12345678 9101112131415 12345678 0100112131415
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Example 2: Propagation Graph (PG) model

We consider a simple directed graph G = (V, €).

Vertex set V: The transmitters, receivers, and scatterers are represented
by vertices in the set: V=V, UV, U V.

Edge set £: Wave propagation between the vertices is modeled by edges
in £. If wave propagation from v € V to v/ € V is possible,
then (v,Vv/) € £.

Rules for propagation:

@ The sum of signals impinging via
the incoming edges of a scatterer

Y, are re-emitted via the outgoing
edges.
S!
\_/‘5 @ An edge e = (v, V') € € transfers

the signal from v to v/ according to
an edge transfer function A.(f).

32/42



Transfer Matrix
PG model

Edge transfer functions can be grouped into matrices according to the vector
signal flow graph:

The transfer matrix is obtained as:
H(f) = D(f) + R(f)(1 + B(f) + B(f)? + B(f)® +...)T(f)
= D(f) + R(f)(1 — B(f)) 1 T(f), p(B(f)) < 1.
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Stochastic Propagation Graph
Edge transfer function for edge e = (v, V') € £

Ae(f) = ge(f) expli(the — 277ef)]

where The edge gain, ge(f) is calculated as:
@ e ~ U(0,27) is the phase o1
. (4rfre)! ec gd
o 7o = ||(rw —ry)||/c is the
propagation delay between m; ec &
vertex w and v with position ge(f) = e HHEotE
vectors r,, and r,, respectively, #(e); e €&
randomly generated
YE 2%; ecé
@ g < 1lis a gain constant, VATTEf u(E:)S(E)

@ c is the speed of light in

Parameters to calibrate:

vacuum. 0 = [g, Ns, Pyis, 03] "

a |g‘z7_ea a):ZTe_za &, CE,

eCé&, eCé&a
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Example 2: Propagation Graph (PG) model

We also apply the proposed algorithm on the Propagation Graph (PG) model
which is of a different mathematical structure than the SV model:

Simulated Data:

1.00

Measured data:
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Observations (PG model)

@ The algorithm converges quickly.

@ Approximate posteriors are highly concentrated around the true
values.

@ The approximate posterior for g starts off very wide and then gets
narrower as the iterations proceed.

@ The proposed method is able to accurately calibrate the PG model.

@ Results on measured data is similar to what is observed in the
simulation experiment.

@ Convergence is achieved after around four or five iterations.
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Model Fit Comparison

Comparing the two model fits in terms of the averaged power delay profile
(APDP), rms delay spread, mean delay, and received power:

Power [dB]

CDF
CDF
CDF

= ’ S T T e
@ Both S-V and PG models are able to fit the APDP well.

@ S-V model is not able to replicate the initial peaks in the data, while
the PG model represents them well.

@ The PG model captures the behavior of the empirical cdfs well, while
S-V model fails to do so.
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© Conclusions
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Take-home message
State-of-the-art calibration method

Measurement Data] Multipath
Campaign extraction

Multipath Parameter Point
Parameters estimation
A
MUSIC, K-power
= SAGE
=

Estlmate
4 Maximum
= means, likelihood,
ESPRIT... Manual... 3 | Least-squares
T
t, A 2
4 °

L fitting...
o

y(t)

-
a
HF
>
-
.

Proposed method using easy-to-compute general summaries

Compute loj
Measurement Data P J
Campaign Y

Log Temporal
temporal Moments Parameter Postenor
2 estimation Esnmate
Moments
m® = ftl ly(6)|2dt Kernel-based  p(8]2)
g ABC
t z®=Inm®

y(t)

4 Zo
Temporal
moments

-
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Take-home message

Advantages:

@ General calibration method applicable to different channel models
@ Simpler processing chain
o Fit is based on explicit choice of summaries

@ Information on posterior is obtained (not only point estimates)
Measurement Data Compute log Log Temporal Parameter Posterlor
c ) mmga temporal Moments —|
ampaign Y estimation Est|mate
Moments Z
? m® = [ ¢ ly@Pde

t 70 = Inm®
: .

Kernel-based p(8]2)
ABC

y(t)

y(t)

Temporal
moments
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